BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 30134818)

  • 1. Loss of Transient Receptor Potential Melastatin 3 ion channel function in natural killer cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis patients.
    Cabanas H; Muraki K; Eaton N; Balinas C; Staines D; Marshall-Gradisnik S
    Mol Med; 2018 Aug; 24(1):44. PubMed ID: 30134818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired calcium mobilization in natural killer cells from chronic fatigue syndrome/myalgic encephalomyelitis patients is associated with transient receptor potential melastatin 3 ion channels.
    Nguyen T; Johnston S; Clarke L; Smith P; Staines D; Marshall-Gradisnik S
    Clin Exp Immunol; 2017 Feb; 187(2):284-293. PubMed ID: 27727448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation into the restoration of TRPM3 ion channel activity in post-COVID-19 condition: a potential pharmacotherapeutic target.
    Sasso EM; Muraki K; Eaton-Fitch N; Smith P; Jeremijenko A; Griffin P; Marshall-Gradisnik S
    Front Immunol; 2024; 15():1264702. PubMed ID: 38765011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients.
    Marshall-Gradisnik S; Johnston S; Chacko A; Nguyen T; Smith P; Staines D
    J Int Med Res; 2016 Dec; 44(6):1381-1394. PubMed ID: 27834303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rituximab impedes natural killer cell function in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis patients: A pilot in vitro investigation.
    Eaton N; Cabanas H; Balinas C; Klein A; Staines D; Marshall-Gradisnik S
    BMC Pharmacol Toxicol; 2018 Mar; 19(1):12. PubMed ID: 29587879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential Implications of Mammalian Transient Receptor Potential Melastatin 7 in the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Review.
    Du Preez S; Cabanas H; Staines D; Marshall-Gradisnik S
    Int J Environ Res Public Health; 2021 Oct; 18(20):. PubMed ID: 34682454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal investigation of natural killer cells and cytokines in chronic fatigue syndrome/myalgic encephalomyelitis.
    Brenu EW; van Driel ML; Staines DR; Ashton KJ; Hardcastle SL; Keane J; Tajouri L; Peterson D; Ramos SB; Marshall-Gradisnik SM
    J Transl Med; 2012 May; 10():88. PubMed ID: 22571715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic review of natural killer cells profile and cytotoxic function in myalgic encephalomyelitis/chronic fatigue syndrome.
    Eaton-Fitch N; du Preez S; Cabanas H; Staines D; Marshall-Gradisnik S
    Syst Rev; 2019 Nov; 8(1):279. PubMed ID: 31727160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A targeted genome association study examining transient receptor potential ion channels, acetylcholine receptors, and adrenergic receptors in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis.
    Johnston S; Staines D; Klein A; Marshall-Gradisnik S
    BMC Med Genet; 2016 Nov; 17(1):79. PubMed ID: 27835969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxic lymphocyte microRNAs as prospective biomarkers for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis.
    Brenu EW; Ashton KJ; van Driel M; Staines DR; Peterson D; Atkinson GM; Marshall-Gradisnik SM
    J Affect Disord; 2012 Dec; 141(2-3):261-9. PubMed ID: 22572093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of T and NK Cell Phenotype With the Diagnosis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS).
    Rivas JL; Palencia T; Fernández G; García M
    Front Immunol; 2018; 9():1028. PubMed ID: 29867995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunological abnormalities as potential biomarkers in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis.
    Brenu EW; van Driel ML; Staines DR; Ashton KJ; Ramos SB; Keane J; Klimas NG; Marshall-Gradisnik SM
    J Transl Med; 2011 May; 9():81. PubMed ID: 21619669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural requirements of steroidal agonists of transient receptor potential melastatin 3 (TRPM3) cation channels.
    Drews A; Mohr F; Rizun O; Wagner TF; Dembla S; Rudolph S; Lambert S; Konrad M; Philipp SE; Behrendt M; Marchais-Oberwinkler S; Covey DF; Oberwinkler J
    Br J Pharmacol; 2014 Feb; 171(4):1019-32. PubMed ID: 24251620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dysregulation of Protein Kinase Gene Expression in NK Cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients.
    Chacko A; Staines DR; Johnston SC; Marshall-Gradisnik SM
    Gene Regul Syst Bio; 2016; 10():85-93. PubMed ID: 27594784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitis.
    Brenu EW; Huth TK; Hardcastle SL; Fuller K; Kaur M; Johnston S; Ramos SB; Staines DR; Marshall-Gradisnik SM
    Int Immunol; 2014 Apr; 26(4):233-42. PubMed ID: 24343819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel characterisation of mast cell phenotypes from peripheral blood mononuclear cells in chronic fatigue syndrome/myalgic encephalomyelitis patients.
    Nguyen T; Johnston S; Chacko A; Gibson D; Cepon J; Smith P; Staines D; Marshall-Gradisnik S
    Asian Pac J Allergy Immunol; 2017 Jun; 35(2):75-81. PubMed ID: 27362406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic modifications and glucocorticoid sensitivity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS).
    de Vega WC; Herrera S; Vernon SD; McGowan PO
    BMC Med Genomics; 2017 Feb; 10(1):11. PubMed ID: 28231836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Killer Cell Immunoglobulin-like Receptor Genotype and Haplotype Investigation of Natural Killer Cells from an Australian Population of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients.
    Huth TK; Brenu EW; Staines DR; Marshall-Gradisnik SM
    Gene Regul Syst Bio; 2016; 10():43-9. PubMed ID: 27346947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo.
    Straub I; Krügel U; Mohr F; Teichert J; Rizun O; Konrad M; Oberwinkler J; Schaefer M
    Mol Pharmacol; 2013 Nov; 84(5):736-50. PubMed ID: 24006495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pregnenolone sulphate- and cholesterol-regulated TRPM3 channels coupled to vascular smooth muscle secretion and contraction.
    Naylor J; Li J; Milligan CJ; Zeng F; Sukumar P; Hou B; Sedo A; Yuldasheva N; Majeed Y; Beri D; Jiang S; Seymour VA; McKeown L; Kumar B; Harteneck C; O'Regan D; Wheatcroft SB; Kearney MT; Jones C; Porter KE; Beech DJ
    Circ Res; 2010 May; 106(9):1507-15. PubMed ID: 20360246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.