These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30134824)

  • 1. Predicting overlapping protein complexes based on core-attachment and a local modularity structure.
    Wang R; Liu G; Wang C; Su L; Sun L
    BMC Bioinformatics; 2018 Aug; 19(1):305. PubMed ID: 30134824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A seed-extended algorithm for detecting protein complexes based on density and modularity with topological structure and GO annotations.
    Wang R; Wang C; Sun L; Liu G
    BMC Genomics; 2019 Aug; 20(1):637. PubMed ID: 31390979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying protein complexes based on density and modularity in protein-protein interaction network.
    Ren J; Wang J; Li M; Wang L
    BMC Syst Biol; 2013; 7 Suppl 4(Suppl 4):S12. PubMed ID: 24565048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Seed Expansion Graph Clustering Method for Protein Complexes Detection in Protein Interaction Networks.
    Wang J; Zheng W; Qian Y; Liang J
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29292776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MCL-CAw: a refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure.
    Srihari S; Ning K; Leong HW
    BMC Bioinformatics; 2010 Oct; 11():504. PubMed ID: 20939868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure.
    Peng W; Wang J; Zhao B; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):179-92. PubMed ID: 26357088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neighbor Affinity-Based Core-Attachment Method to Detect Protein Complexes in Dynamic PPI Networks.
    Lei X; Liang J
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28737728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying protein complexes based on an edge weight algorithm and core-attachment structure.
    Wang R; Liu G; Wang C
    BMC Bioinformatics; 2019 Sep; 20(1):471. PubMed ID: 31521132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):616-27. PubMed ID: 26356332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein complex prediction for large protein protein interaction networks with the Core&Peel method.
    Pellegrini M; Baglioni M; Geraci F
    BMC Bioinformatics; 2016 Nov; 17(Suppl 12):372. PubMed ID: 28185552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CAMWI: Detecting protein complexes using weighted clustering coefficient and weighted density.
    Lakizadeh A; Jalili S; Marashi SA
    Comput Biol Chem; 2015 Oct; 58():231-40. PubMed ID: 26319550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated approach to identify protein complex based on best neighbour and modularity increment.
    Shen X; Zhao Y; Li Y; Yi Y; He T; Yang J
    Int J Data Min Bioinform; 2015; 11(4):458-73. PubMed ID: 26336669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying hierarchical and overlapping protein complexes based on essential protein-protein interactions and "seed-expanding" method.
    Ren J; Zhou W; Wang J
    Biomed Res Int; 2014; 2014():838714. PubMed ID: 25143945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurately Detecting Protein Complexes by Graph Embedding and Combining Functions with Interactions.
    Yao H; Shi Y; Guan J; Zhou S
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):777-787. PubMed ID: 30736004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.
    Dimitrakopoulos C; Theofilatos K; Pegkas A; Likothanassis S; Mavroudi S
    Artif Intell Med; 2016 Jul; 71():62-9. PubMed ID: 27506132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.
    He J; Li C; Ye B; Zhong W
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S19. PubMed ID: 22759424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks.
    Wu H; Gao L; Dong J; Yang X
    PLoS One; 2014; 9(3):e91856. PubMed ID: 24642838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Method for Detecting Protein Complexes based on the Three Node Cliques.
    Zhang W; Zou X
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):879-86. PubMed ID: 26357329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Complexes in Biological Networks Through Diversified Dense Subgraph Mining.
    Ma X; Zhou G; Shang J; Wang J; Peng J; Han J
    J Comput Biol; 2017 Sep; 24(9):923-941. PubMed ID: 28570104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Complexes Prediction Method Based on Core-Attachment Structure and Functional Annotations.
    Li B; Liao B
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28878201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.