BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30135035)

  • 1. Input-output curves of low and high spontaneous rate auditory nerve fibers are exponential near threshold.
    Horst JW; McGee J; Walsh EJ
    Hear Res; 2018 Sep; 367():195-206. PubMed ID: 30135035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase Locking of Auditory Nerve Fibers: The Role of Lowpass Filtering by Hair Cells.
    Peterson AJ; Heil P
    J Neurosci; 2020 Jun; 40(24):4700-4714. PubMed ID: 32376778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope.
    Peterson AJ; Heil P
    J Neurosci; 2019 May; 39(21):4077-4099. PubMed ID: 30867259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cochlear aging disrupts the correlation between spontaneous rate- and sound-level coding in auditory nerve fibers.
    Heeringa AN; Teske F; Ashida G; Köppl C
    J Neurophysiol; 2023 Sep; 130(3):736-750. PubMed ID: 37584075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations.
    Wu JS; Young ED; Glowatzki E
    J Neurosci; 2016 Oct; 36(41):10584-10597. PubMed ID: 27733610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers.
    Rhode WS; Smith PH
    Hear Res; 1985 May; 18(2):159-68. PubMed ID: 2995298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peristimulus Time Responses Predict Adaptation and Spontaneous Firing of Auditory-Nerve Fibers: From Rodents Data to Humans.
    Huet A; Batrel C; Dubernard X; Kleiber JC; Desmadryl G; Venail F; Liberman MC; Nouvian R; Puel JL; Bourien J
    J Neurosci; 2022 Mar; 42(11):2253-2267. PubMed ID: 35078924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sound Coding in the Auditory Nerve: From Single Fiber Activity to Cochlear Mass Potentials in Gerbils.
    Huet A; Batrel C; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    Neuroscience; 2019 May; 407():83-92. PubMed ID: 30342201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.
    Tillein J; Hartmann R; Kral A
    Hear Res; 2015 Apr; 322():112-26. PubMed ID: 25285621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear input-output functions derived from the responses of guinea-pig cochlear nerve fibres: variations with characteristic frequency.
    Cooper NP; Yates GK
    Hear Res; 1994 Aug; 78(2):221-34. PubMed ID: 7982815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desynchronization of electrically evoked auditory-nerve activity by high-frequency pulse trains of long duration.
    Litvak LM; Smith ZM; Delgutte B; Eddington DK
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2066-78. PubMed ID: 14587606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [An approach for proper recording of the unit discharge in auditory nerve and inferior colliculus].
    Pan T; Cao KL; Wang ZZ
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2001 Oct; 23(5):481-4. PubMed ID: 12905867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency selectivity in the auditory periphery: similarities between damaged and developing ears.
    Walsh EJ; McGee J
    Am J Otolaryngol; 1990; 11(1):23-32. PubMed ID: 2321707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of auditory nerve fibers to compound action potential of the auditory nerve.
    Bourien J; Tang Y; Batrel C; Huet A; Lenoir M; Ladrech S; Desmadryl G; Nouvian R; Puel JL; Wang J
    J Neurophysiol; 2014 Sep; 112(5):1025-39. PubMed ID: 24848461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spike timing in auditory-nerve fibers during spontaneous activity and phase locking.
    Heil P; Peterson AJ
    Synapse; 2017 Jan; 71(1):5-36. PubMed ID: 27466786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers.
    Heil P; Neubauer H; Brown M; Irvine DR
    Hear Res; 2008 Apr; 238(1-2):25-38. PubMed ID: 18077116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound coding in the auditory nerve of gerbils.
    Huet A; Batrel C; Tang Y; Desmadryl G; Wang J; Puel JL; Bourien J
    Hear Res; 2016 Aug; 338():32-9. PubMed ID: 27220483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise.
    Liberman MC
    J Neurophysiol; 1988 Nov; 60(5):1779-98. PubMed ID: 3199181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central projections of auditory nerve fibers of differing spontaneous rate, II: Posteroventral and dorsal cochlear nuclei.
    Liberman MC
    J Comp Neurol; 1993 Jan; 327(1):17-36. PubMed ID: 8432906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.