These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 30135357)
1. Micropatterning of Metal Nanoparticle Ink by Laser-Induced Thermocapillary Flow. Park S; Kwon J; Lim J; Shin W; Lee Y; Lee H; Kim HJ; Han S; Yeo J; Ko SH; Hong S Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30135357 [TBL] [Abstract][Full Text] [Related]
2. Shear-Assisted Laser Transfer of Metal Nanoparticle Ink to an Elastomer Substrate. Shin W; Lim J; Lee Y; Park S; Kim H; Cho H; Shin J; Yoon Y; Lee H; Kim HJ; Han S; Ko SH; Hong S Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544907 [TBL] [Abstract][Full Text] [Related]
3. Continuous-Wave Laser-Induced Transfer of Metal Nanoparticles to Arbitrary Polymer Substrates. Lim J; Kim Y; Shin J; Lee Y; Shin W; Qu W; Hwang E; Park S; Hong S Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32272614 [TBL] [Abstract][Full Text] [Related]
4. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics. Yeo J; Hong S; Lee D; Hotz N; Lee MT; Grigoropoulos CP; Ko SH PLoS One; 2012; 7(8):e42315. PubMed ID: 22900011 [TBL] [Abstract][Full Text] [Related]
5. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink. Lee DG; Kim DK; Moon YJ; Moon SJ Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285 [TBL] [Abstract][Full Text] [Related]
6. Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device. An K; Hong S; Han S; Lee H; Yeo J; Ko SH ACS Appl Mater Interfaces; 2014 Feb; 6(4):2786-90. PubMed ID: 24471931 [TBL] [Abstract][Full Text] [Related]
7. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. Hong S; Yeo J; Kim G; Kim D; Lee H; Kwon J; Lee H; Lee P; Ko SH ACS Nano; 2013 Jun; 7(6):5024-31. PubMed ID: 23731244 [TBL] [Abstract][Full Text] [Related]
8. A Transformative Gold Patterning through Selective Laser Refining of Cyanide. Lim J; Ham J; Lee W; Hwang E; Lee WC; Hong S Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443754 [TBL] [Abstract][Full Text] [Related]
9. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors. Lee D; Paeng D; Park HK; Grigoropoulos CP ACS Nano; 2014 Oct; 8(10):9807-14. PubMed ID: 25130917 [TBL] [Abstract][Full Text] [Related]
10. Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review. Hwang E; Hong J; Yoon J; Hong S Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079386 [TBL] [Abstract][Full Text] [Related]
11. Estimation of the properties of silver nanoparticle ink during laser sintering via in-situ electrical resistance measurement. Lee DG; Kim DK; Moon YJ; Moon SJ J Nanosci Nanotechnol; 2013 Sep; 13(9):5982-7. PubMed ID: 24205585 [TBL] [Abstract][Full Text] [Related]
12. Nano oxide intermediate layer assisted room temperature sintering of ink-jet printed silver nanoparticles pattern. Liu Z; Ji H; Yuan Q; Ma X; Feng H; Zhao W; Wei J; Xu C; Li M Nanotechnology; 2019 Dec; 30(49):495302. PubMed ID: 31480026 [TBL] [Abstract][Full Text] [Related]
13. Flexible Heater Fabrication Using Amino Acid-Based Ink and Laser-Direct Writing. Koo S Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557507 [TBL] [Abstract][Full Text] [Related]
14. Fully Solution-Processable Fabrication of Multi-Layered Circuits on a Flexible Substrate Using Laser Processing. Ji SY; Choi W; Kim HY; Jeon JW; Cho SH; Chang WS Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29425144 [TBL] [Abstract][Full Text] [Related]
15. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate. Liu YK; Lee MT ACS Appl Mater Interfaces; 2014 Aug; 6(16):14576-82. PubMed ID: 25076124 [TBL] [Abstract][Full Text] [Related]
16. A novel microscale selective laser sintering (μ-SLS) process for the fabrication of microelectronic parts. Roy NK; Behera D; Dibua OG; Foong CS; Cullinan MA Microsyst Nanoeng; 2019; 5():64. PubMed ID: 34567614 [TBL] [Abstract][Full Text] [Related]
17. Cu Patterning Using Femtosecond Laser Reductive Sintering of CuO Nanoparticles under Inert Gas Injection. Mizoshiri M; Yoshidomi K Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198689 [TBL] [Abstract][Full Text] [Related]
18. Sintering Behavior of Copper Nanoparticle Ink by Laser in Air. Yu JH; Jung HS; Jeong JK; Kang KT J Nanosci Nanotechnol; 2019 Mar; 19(3):1261-1268. PubMed ID: 30469173 [TBL] [Abstract][Full Text] [Related]
19. Generation of Subsurface Voids, Incubation Effect, and Formation of Nanoparticles in Short Pulse Laser Interactions with Bulk Metal Targets in Liquid: Molecular Dynamics Study. Shih CY; Shugaev MV; Wu C; Zhigilei LV J Phys Chem C Nanomater Interfaces; 2017 Aug; 121(30):16549-16567. PubMed ID: 28798858 [TBL] [Abstract][Full Text] [Related]
20. Effect of Substrates on Femtosecond Laser Pulse-Induced Reductive Sintering of Cobalt Oxide Nanoparticles. Mizoshiri M; Yoshidomi K; Darkhanbaatar N; Khairullina EM; Tumkin II Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]