These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30135360)

  • 1. A Novel Method for Estimating Knee Angle Using Two Leg-Mounted Gyroscopes for Continuous Monitoring with Mobile Health Devices.
    Allseits E; Kim KJ; Bennett C; Gailey R; Gaunaurd I; Agrawal V
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30135360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A practical gait analysis system using gyroscopes.
    Tong K; Granat MH
    Med Eng Phys; 1999 Mar; 21(2):87-94. PubMed ID: 10426508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A practical step length algorithm using lower limb angular velocities.
    Allseits E; Agrawal V; Lučarević J; Gailey R; Gaunaurd I; Bennett C
    J Biomech; 2018 Jan; 66():137-144. PubMed ID: 29198369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes.
    Williamson R; Andrews BJ
    Med Biol Eng Comput; 2001 May; 39(3):294-302. PubMed ID: 11465883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online tracking of the lower body joint angles using IMUs for gait rehabilitation.
    Joukov V; Karg M; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A preliminary test of measurement of joint angles and stride length with wireless inertial sensors for wearable gait evaluation system.
    Watanabe T; Saito H; Koike E; Nitta K
    Comput Intell Neurosci; 2011; 2011():975193. PubMed ID: 21941531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a body joint angle measurement system using IMU sensors.
    Bakhshi S; Mahoor MH; Davidson BS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6923-6. PubMed ID: 22255930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population.
    De Vroey H; Staes F; Weygers I; Vereecke E; Vanrenterghem J; Deklerck J; Van Damme G; Hallez H; Claeys K
    Clin Biomech (Bristol, Avon); 2018 May; 54():22-27. PubMed ID: 29533844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ambulatory estimation of knee-joint kinematics in anatomical coordinate system using accelerometers and magnetometers.
    Kun L; Inoue Y; Shibata K; Enguo C
    IEEE Trans Biomed Eng; 2011 Feb; 58(2):435-42. PubMed ID: 21257363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of a custom physical activity and knee angle measurement sensor system for patients with neuromuscular disorders and gait abnormalities.
    Feldhege F; Mau-Moeller A; Lindner T; Hein A; Markschies A; Zettl UK; Bader R
    Sensors (Basel); 2015 May; 15(5):10734-52. PubMed ID: 25954954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower Body Kinematics Monitoring in Running Using Fabric-Based Wearable Sensors and Deep Convolutional Neural Networks.
    Gholami M; Rezaei A; Cuthbert TJ; Napier C; Menon C
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambulatory measurement of 3D knee joint angle.
    Favre J; Jolles BM; Aissaoui R; Aminian K
    J Biomech; 2008; 41(5):1029-35. PubMed ID: 18222459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shoulder and elbow joint angle tracking with inertial sensors.
    El-Gohary M; McNames J
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2635-41. PubMed ID: 22911538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress on Range of Motion After Total Knee Replacement by Sensor-Based System.
    Huang YP; Liu YY; Hsu WH; Lai LJ; Lee MS
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32197503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive estimation of temporal gait parameters using body-worn gyroscopes.
    Greene BR; McGrath D; O'Donovan KJ; O'Neill R; Burns A; Caulfield B
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1296-9. PubMed ID: 21095922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial sensor-based knee flexion/extension angle estimation.
    Cooper G; Sheret I; McMillan L; Siliverdis K; Sha N; Hodgins D; Kenney L; Howard D
    J Biomech; 2009 Dec; 42(16):2678-85. PubMed ID: 19782986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis.
    Alonge F; Cucco E; D'Ippolito F; Pulizzotto A
    Sensors (Basel); 2014 May; 14(5):8430-46. PubMed ID: 24828578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability and concurrent validity of spatiotemporal stride characteristics measured with an ankle-worn sensor among older individuals.
    Rantalainen T; Pirkola H; Karavirta L; Rantanen T; Linnamo V
    Gait Posture; 2019 Oct; 74():33-39. PubMed ID: 31442820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An adaptive gyroscope-based algorithm for temporal gait analysis.
    Greene BR; McGrath D; O'Neill R; O'Donovan KJ; Burns A; Caulfield B
    Med Biol Eng Comput; 2010 Dec; 48(12):1251-60. PubMed ID: 21042951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.