BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30135868)

  • 1. Markerless Four-Dimensional-Cone Beam Computed Tomography Projection-Phase Sorting Using Prior Knowledge and Patient Motion Modeling: A Feasibility Study.
    Zhang L; Zhang Y; Zhang Y; Harris WB; Yin FF; Cai J; Ren L
    Cancer Transl Med; 2017; 3(6):185-193. PubMed ID: 30135868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating 4D-CBCT from prior information and extremely limited angle projections using structural PCA and weighted free-form deformation for lung radiotherapy.
    Harris W; Zhang Y; Yin FF; Ren L
    Med Phys; 2017 Mar; 44(3):1089-1104. PubMed ID: 28079267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel technique for markerless, self-sorted 4D-CBCT: feasibility study.
    Vergalasova I; Cai J; Yin FF
    Med Phys; 2012 Mar; 39(3):1442-51. PubMed ID: 22380377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections.
    Zhang Y; Yin FF; Segars WP; Ren L
    Med Phys; 2013 Dec; 40(12):121701. PubMed ID: 24320487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing liver tumor localization accuracy by prior-knowledge-guided motion modeling and a biomechanical model.
    Zhang Y; Folkert MR; Huang X; Ren L; Meyer J; Tehrani JN; Reynolds R; Wang J
    Quant Imaging Med Surg; 2019 Jul; 9(7):1337-1349. PubMed ID: 31448218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 4D liver tumor localization using cone-beam projections and a biomechanical model.
    Zhang Y; Folkert MR; Li B; Huang X; Meyer JJ; Chiu T; Lee P; Tehrani JN; Cai J; Parsons D; Jia X; Wang J
    Radiother Oncol; 2019 Apr; 133():183-192. PubMed ID: 30448003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method.
    Jia X; Tian Z; Lou Y; Sonke JJ; Jiang SB
    Med Phys; 2012 Sep; 39(9):5592-602. PubMed ID: 22957625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. U-net-based deformation vector field estimation for motion-compensated 4D-CBCT reconstruction.
    Huang X; Zhang Y; Chen L; Wang J
    Med Phys; 2020 Jul; 47(7):3000-3012. PubMed ID: 32198934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing scan angle using adaptive prior knowledge for a limited-angle intrafraction verification (LIVE) system for conformal arc radiotherapy.
    Zhang Y; Yin FF; Zhang Y; Ren L
    Phys Med Biol; 2017 May; 62(9):3859-3882. PubMed ID: 28338470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modified McKinnon-Bates (MKB) algorithm for improved 4D cone-beam computed tomography (CBCT) of the lung.
    Star-Lack J; Sun M; Oelhafen M; Berkus T; Pavkovich J; Brehm M; Arheit M; Paysan P; Wang A; Munro P; Seghers D; Carvalho LM; Verbakel WFAR
    Med Phys; 2018 Jun; ():. PubMed ID: 29869784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel markerless technique to evaluate daily lung tumor motion based on conventional cone-beam CT projection data.
    Yang Y; Zhong Z; Guo X; Wang J; Anderson J; Solberg T; Mao W
    Int J Radiat Oncol Biol Phys; 2012 Apr; 82(5):e749-56. PubMed ID: 22330989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory correlated cone beam CT.
    Sonke JJ; Zijp L; Remeijer P; van Herk M
    Med Phys; 2005 Apr; 32(4):1176-86. PubMed ID: 15895601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow gantry rotation acquisition technique for on-board four-dimensional digital tomosynthesis.
    Maurer J; Pan T; Yin FF
    Med Phys; 2010 Feb; 37(2):921-33. PubMed ID: 20229901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-quality initial image-guided 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2020 Jun; 47(5):2099-2115. PubMed ID: 32017128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT.
    Wang J; Gu X
    Med Phys; 2013 Oct; 40(10):101912. PubMed ID: 24089914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principal component reconstruction (PCR) for cine CBCT with motion learning from 2D fluoroscopy.
    Gao H; Zhang Y; Ren L; Yin FF
    Med Phys; 2018 Jan; 45(1):167-177. PubMed ID: 29136282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor phase recognition using cone-beam computed tomography projections and external surrogate information.
    Tsai P; Yan G; Liu C; Hung YC; Kahler DL; Park JY; Potter N; Li JG; Lu B
    Med Phys; 2020 Oct; 47(10):5077-5089. PubMed ID: 32463944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluoroscopic 3D Image Generation from Patient-Specific PCA Motion Models Derived from 4D-CBCT Patient Datasets: A Feasibility Study.
    Dhou S; Alkhodari M; Ionascu D; Williams C; Lewis JH
    J Imaging; 2022 Jan; 8(2):. PubMed ID: 35200720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image acquisition optimization of a limited-angle intrafraction verification (LIVE) system for lung radiotherapy.
    Zhang Y; Deng X; Yin FF; Ren L
    Med Phys; 2018 Jan; 45(1):340-351. PubMed ID: 29091287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential underestimation of the internal target volume (ITV) from free-breathing CBCT.
    Vergalasova I; Maurer J; Yin FF
    Med Phys; 2011 Aug; 38(8):4689-99. PubMed ID: 21928643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.