These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 30136120)
61. Preoperative evaluation of venous systems with 3-dimensional contrast-enhanced magnetic resonance venography in brain tumors: comparison with time-of-flight magnetic resonance venography and digital subtraction angiography. Lee JM; Jung S; Moon KS; Seo JJ; Kim IY; Jung TY; Lee JK; Kang SS Surg Neurol; 2005 Aug; 64(2):128-33; discussion 133-4. PubMed ID: 16051003 [TBL] [Abstract][Full Text] [Related]
62. Evaluation of image quality in carotid and cerebrovascular disease: a comparative study between subtraction and routine computed tomography angiography. Zhao DL; Wan Y; Wang GK; Wang HB; Liang HW; Zhou HT; Gao L; Zhang JL Echocardiography; 2016 Nov; 33(11):1735-1740. PubMed ID: 27528234 [TBL] [Abstract][Full Text] [Related]
63. The Position and Role of Four-Dimensional Computed Tomography Angiography in the Diagnosis and Treatment of Spinal Arteriovenous Fistulas. Yamaguchi S; Takemoto K; Takeda M; Kajihara Y; Mitsuhara T; Kolakshyapati M; Mukada K; Kurisu K World Neurosurg; 2017 Jul; 103():611-619. PubMed ID: 28366753 [TBL] [Abstract][Full Text] [Related]
64. Accuracy of Intraoperative Computed Tomography during Deep Brain Stimulation Procedures: Comparison with Postoperative Magnetic Resonance Imaging. Bot M; van den Munckhof P; Bakay R; Stebbins G; Verhagen Metman L Stereotact Funct Neurosurg; 2017; 95(3):183-188. PubMed ID: 28601874 [TBL] [Abstract][Full Text] [Related]
65. Comparison of contrast-enhanced color Doppler imaging (CDI), computed tomography (CT), and magnetic resonance imaging (MRI) for the detection of crossing vessels in patients with ureteropelvic junction obstruction (UPJO). Mitterberger M; Pinggera GM; Neururer R; Peschel R; Colleselli D; Aigner F; Gradl J; Bartsch G; Strasser H; Pallwein L; Frauscher F Eur Urol; 2008 Jun; 53(6):1254-60. PubMed ID: 18037558 [TBL] [Abstract][Full Text] [Related]
66. 3D bone subtraction CT angiography for the evaluation of intracranial aneurysms: a comparison study with 2D bone subtraction CT angiography and conventional non-subtracted CT angiography. Cheng B; Cai W; Sun C; Kang Y; Gong J Acta Radiol; 2015 Sep; 56(9):1127-34. PubMed ID: 25258207 [TBL] [Abstract][Full Text] [Related]
67. Three-dimensional computed tomographic angiography with low loads of contrast agent in acute subarachnoid hemorrhage. Takanashi Y; Shinonaga M Neurol Res; 2002 Apr; 24(3):233-6. PubMed ID: 11958414 [TBL] [Abstract][Full Text] [Related]
68. The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques. Shui W; Zhou M; Chen S; Pan Z; Deng Q; Yao Y; Pan H; He T; Wang X Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):13-23. PubMed ID: 27480284 [TBL] [Abstract][Full Text] [Related]
69. Sixteen-row multislice computed tomography angiography in the diagnosis and characterization of intracranial aneurysms: comparison with conventional angiography and intraoperative findings. Chen W; Yang Y; Xing W; Qiu J; Peng Y J Neurosurg; 2008 Jun; 108(6):1184-91. PubMed ID: 18518726 [TBL] [Abstract][Full Text] [Related]
70. Depiction of branch vessels arising from intracranial aneurysm sacs: Time-of-flight MR angiography versus CT angiography. Goto M; Kunimatsu A; Shojima M; Mori H; Abe O; Aoki S; Hayashi N; Gonoi W; Miyati T; Ino K; Yano K; Saito N; Ohtomo K Clin Neurol Neurosurg; 2014 Nov; 126():177-84. PubMed ID: 25270230 [TBL] [Abstract][Full Text] [Related]
71. Magnetic resonance imaging is the diagnostic tool of choice in the preoperative evaluation of patients with partial anomalous pulmonary venous return. Festa P; Ait-Ali L; Cerillo AG; De Marchi D; Murzi B Int J Cardiovasc Imaging; 2006 Oct; 22(5):685-93. PubMed ID: 16547601 [TBL] [Abstract][Full Text] [Related]
72. Deep brain stimulation of the lateral habenular complex in treatment-resistant depression: traps and pitfalls of trajectory choice. Schneider TM; Beynon C; Sartorius A; Unterberg AW; Kiening KL Neurosurgery; 2013 Jun; 72(2 Suppl Operative):ons184-93; discussion ons193. PubMed ID: 23147781 [TBL] [Abstract][Full Text] [Related]
73. [Stent-assisted intracranial angioplasty: potentials and limitations of pre- and postinterventional CT angiography]. Schlötzer W; Huber R; Schmitz BL Rofo; 2009 Feb; 181(2):121-8. PubMed ID: 19173154 [TBL] [Abstract][Full Text] [Related]
74. Accuracy of 16-row multislice computed tomographic angiography for assessment of small cerebral aneurysms. Chen W; Wang J; Xin W; Peng Y; Xu Q Neurosurgery; 2008 Jan; 62(1):113-21; discussion 121-2. PubMed ID: 18300898 [TBL] [Abstract][Full Text] [Related]
75. Yield of CT angiography and contrast-enhanced MR imaging in patients with dizziness. Fakhran S; Alhilali L; Branstetter BF AJNR Am J Neuroradiol; 2013 May; 34(5):1077-81. PubMed ID: 23099499 [TBL] [Abstract][Full Text] [Related]
77. Multisurgeon, multisite validation of a trajectory planning algorithm for deep brain stimulation procedures. Liu Y; Konrad PE; Neimat JS; Tatter SB; Yu H; Datteri RD; Landman BA; Noble JH; Pallavaram S; Dawant BM; D'Haese PF IEEE Trans Biomed Eng; 2014 Sep; 61(9):2479-87. PubMed ID: 24833411 [TBL] [Abstract][Full Text] [Related]
78. Optimized Deep Brain Stimulation Surgery to Avoid Vascular Damage: A Single-Center Retrospective Analysis of Path Planning for Various Deep Targets by MRI Image Fusion. Wang X; Li N; Li J; Kou H; Wang J; Jing J; Su M; Li Y; Qu L; Wang X Brain Sci; 2022 Jul; 12(8):. PubMed ID: 35892408 [TBL] [Abstract][Full Text] [Related]
79. Combination of CT angiography and MRI in surgical planning of deep brain stimulation. Krüger MT; Coenen VA; Jenkner C; Urbach H; Egger K; Reinacher PC Neuroradiology; 2018 Nov; 60(11):1151-1158. PubMed ID: 30136120 [TBL] [Abstract][Full Text] [Related]