BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30136168)

  • 21. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.
    Matsuzaki S; Kotake Y; Humphries KM
    Biochemistry; 2011 Dec; 50(50):10792-803. PubMed ID: 22091587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane.
    Lambert AJ; Brand MD
    Biochem J; 2004 Sep; 382(Pt 2):511-7. PubMed ID: 15175007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin.
    Batandier C; Guigas B; Detaille D; El-Mir MY; Fontaine E; Rigoulet M; Leverve XM
    J Bioenerg Biomembr; 2006 Feb; 38(1):33-42. PubMed ID: 16732470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of reverse electron transfer at mitochondrial complex I by unconventional Notch action in cancer stem cells.
    Ojha R; Tantray I; Rimal S; Mitra S; Cheshier S; Lu B
    Dev Cell; 2022 Jan; 57(2):260-276.e9. PubMed ID: 35077680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial complex I ROS production and redox signaling in hypoxia.
    Okoye CN; Koren SA; Wojtovich AP
    Redox Biol; 2023 Nov; 67():102926. PubMed ID: 37871533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
    Blokhina O; Fagerstedt KV
    Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species.
    Redout EM; Wagner MJ; Zuidwijk MJ; Boer C; Musters RJ; van Hardeveld C; Paulus WJ; Simonides WS
    Cardiovasc Res; 2007 Sep; 75(4):770-81. PubMed ID: 17582388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sites of generation of reactive oxygen species in homogenates of brain tissue determined with the use of respiratory substrates and inhibitors.
    Kudin AP; Malinska D; Kunz WS
    Biochim Biophys Acta; 2008; 1777(7-8):689-95. PubMed ID: 18510942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial permeability transition pore: sensitivity to opening and mechanistic dependence on substrate availability.
    Briston T; Roberts M; Lewis S; Powney B; M Staddon J; Szabadkai G; Duchen MR
    Sci Rep; 2017 Sep; 7(1):10492. PubMed ID: 28874733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring mitochondrial electron fluxes using NAD(P)H-flavoprotein fluorometry reveals complex action of isoflurane on cardiomyocytes.
    Sedlic F; Pravdic D; Hirata N; Mio Y; Sepac A; Camara AK; Wakatsuki T; Bosnjak ZJ; Bienengraeber M
    Biochim Biophys Acta; 2010 Oct; 1797(10):1749-58. PubMed ID: 20646994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactive oxygen species enhance mitochondrial function, insulin sensitivity and glucose uptake in skeletal muscle of senescence accelerated prone mice SAMP8.
    Barquissau V; Capel F; Dardevet D; Feillet-Coudray C; Gallinier A; Chauvin MA; Rieusset J; Morio B
    Free Radic Biol Med; 2017 Dec; 113():267-279. PubMed ID: 29024807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondrial complex I: a central regulator of the aging process.
    Stefanatos R; Sanz A
    Cell Cycle; 2011 May; 10(10):1528-32. PubMed ID: 21471732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How mitochondria produce reactive oxygen species.
    Murphy MP
    Biochem J; 2009 Jan; 417(1):1-13. PubMed ID: 19061483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex.
    O'Brien M; Chalker J; Slade L; Gardiner D; Mailloux RJ
    Free Radic Biol Med; 2017 May; 106():302-314. PubMed ID: 28242228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan.
    Scialò F; Sriram A; Fernández-Ayala D; Gubina N; Lõhmus M; Nelson G; Logan A; Cooper HM; Navas P; Enríquez JA; Murphy MP; Sanz A
    Cell Metab; 2016 Apr; 23(4):725-34. PubMed ID: 27076081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Association between ROS production, swelling and the respirasome integrity in cardiac mitochondria.
    Jang S; Javadov S
    Arch Biochem Biophys; 2017 Sep; 630():1-8. PubMed ID: 28736227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin.
    Paradies G; Petrosillo G; Pistolese M; Di Venosa N; Federici A; Ruggiero FM
    Circ Res; 2004 Jan; 94(1):53-9. PubMed ID: 14656928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms and mathematical modeling of ROS production by the mitochondrial electron transport chain.
    Chenna S; Koopman WJH; Prehn JHM; Connolly NMC
    Am J Physiol Cell Physiol; 2022 Jul; 323(1):C69-C83. PubMed ID: 35613354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
    Dröse S; Brandt U; Wittig I
    Biochim Biophys Acta; 2014 Aug; 1844(8):1344-54. PubMed ID: 24561273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.