BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30136209)

  • 1. A marker-based contactless catheter-sensing method to detect surgeons' operations for catheterization training systems.
    Guo J; Guo S; Li M; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):76. PubMed ID: 30136209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and performance evaluation of a master controller for endovascular catheterization.
    Guo J; Guo S; Tamiya T; Hirata H; Ishihara H
    Int J Comput Assist Radiol Surg; 2016 Jan; 11(1):119-31. PubMed ID: 26067289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Image Information-Based Objective Assessment Method of Technical Manipulation Skills for Intravascular Interventions.
    Guo J; Li M; Wang Y; Guo S
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cooperation of catheters and guidewires-based novel remote-controlled vascular interventional robot.
    Bao X; Guo S; Xiao N; Li Y; Yang C; Jiang Y
    Biomed Microdevices; 2018 Feb; 20(1):20. PubMed ID: 29460178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A linear stepping endovascular intervention robot with variable stiffness and force sensing.
    He C; Wang S; Zuo S
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):671-682. PubMed ID: 29520525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guidewire and catheter behavioural simulation.
    Luboz V; Zhai J; Odetoyinbo T; Littler P; Gould D; How T; Bello F
    Stud Health Technol Inform; 2011; 163():317-23. PubMed ID: 21335811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning-based endovascular navigation through the use of non-rigid registration for collaborative robotic catheterization.
    Chi W; Liu J; Rafii-Tari H; Riga C; Bicknell C; Yang GZ
    Int J Comput Assist Radiol Surg; 2018 Jun; 13(6):855-864. PubMed ID: 29651714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematics effectively delineate accomplished users of endovascular robotics with a physical training model.
    Duran C; Estrada S; O'Malley M; Lumsden AB; Bismuth J
    J Vasc Surg; 2015 Feb; 61(2):535-41. PubMed ID: 25619579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced catheter technology: is this the answer to overcoming the long learning curve in complex endovascular procedures.
    Riga CV; Bicknell CD; Sidhu R; Cochennec F; Normahani P; Chadha P; Kashef E; Hamady M; Cheshire NJ
    Eur J Vasc Endovasc Surg; 2011 Oct; 42(4):531-8. PubMed ID: 21388839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance imaging compatible remote catheter navigation system with 3 degrees of freedom.
    Tavallaei MA; Lavdas MK; Gelman D; Drangova M
    Int J Comput Assist Radiol Surg; 2016 Aug; 11(8):1537-45. PubMed ID: 26704372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of robotic endovascular catheters for arch vessel cannulation.
    Riga CV; Bicknell CD; Hamady MS; Cheshire NJ
    J Vasc Surg; 2011 Sep; 54(3):799-809. PubMed ID: 21620623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel catheter interaction simulating method for virtual reality interventional training systems.
    Shi P; Guo S; Jin X; Hirata H; Tamiya T; Kawanishi M
    Med Biol Eng Comput; 2023 Mar; 61(3):685-697. PubMed ID: 36585560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A virtual reality-based method of decreasing transmission time of visual feedback for a tele-operative robotic catheter operating system.
    Guo J; Guo S; Tamiya T; Hirata H; Ishihara H
    Int J Med Robot; 2016 Mar; 12(1):32-45. PubMed ID: 25693866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and evaluation of safety operation VR training system for robotic catheter surgery.
    Wang Y; Guo S; Li Y; Tamiya T; Song Y
    Med Biol Eng Comput; 2018 Jan; 56(1):25-35. PubMed ID: 28667589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Performance Evaluation of Real-time Endovascular Interventional Surgical Robotic System with High Accuracy.
    Wang K; Chen B; Lu Q; Li H; Liu M; Shen Y; Xu Z
    Int J Med Robot; 2018 Oct; 14(5):e1915. PubMed ID: 29761842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery.
    Tercero C; Ikeda S; Uchiyama T; Fukuda T; Arai F; Okada Y; Ono Y; Hattori R; Yamamoto T; Negoro M; Takahashi I
    Int J Med Robot; 2007 Mar; 3():52-8. PubMed ID: 17441026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compensatory force measurement and multimodal force feedback for remote-controlled vascular interventional robot.
    Bao X; Guo S; Xiao N; Li Y; Shi L
    Biomed Microdevices; 2018 Aug; 20(3):74. PubMed ID: 30116968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A magnetic-resonance-imaging-compatible remote catheter navigation system.
    Tavallaei MA; Thakur Y; Haider S; Drangova M
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):899-905. PubMed ID: 23192485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guidewire Endpoint Detection Based on Pixel Adjacent Relation in Robot-assisted Cardiovascular Interventions.
    Du W; Yi G; Omisore OM; Duan W; Akinyemi TO; Chen X; Wang L; Lee BG; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38082615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A virtual-reality simulator and force sensation combined catheter operation training system and its preliminary evaluation.
    Wang Y; Guo S; Tamiya T; Hirata H; Ishihara H; Yin X
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27538939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.