These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30136209)

  • 21. A robotic catheter system with real-time force feedback and monitor.
    Xiao N; Guo J; Guo S; Tamiya T
    Australas Phys Eng Sci Med; 2012 Sep; 35(3):283-9. PubMed ID: 22763489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A vascular interventional surgical robot based on surgeon's operating skills.
    Yang C; Guo S; Bao X; Xiao N; Shi L; Li Y; Jiang Y
    Med Biol Eng Comput; 2019 Sep; 57(9):1999-2010. PubMed ID: 31346947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Magnetorheological Fluids-Based Robot-Assisted Catheter/Guidewire Surgery System for Endovascular Catheterization.
    Zhang L; Gu S; Guo S; Tamiya T
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34070909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Haptic Feedback for Control and Active Constraints in Contactless Laser Surgery: Concept, Implementation, and Evaluation.
    Olivieri E; Barresi G; Caldwell DG; Mattos LS; Olivieri E; Barresi G; Caldwell DG; Mattos LS; Olivieri E; Caldwell DG; Barresi G; Mattos LS
    IEEE Trans Haptics; 2018; 11(2):241-254. PubMed ID: 29911981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Guidewire path determination for intravascular applications.
    Cardoso FM; Furuie SS
    Comput Methods Biomech Biomed Engin; 2016; 19(6):628-38. PubMed ID: 26176911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Force calibration for an endovascular robotic system with proximal force measurement.
    Sankaran NK; Chembrammel P; Kesavadas T
    Int J Med Robot; 2020 Apr; 16(2):e2045. PubMed ID: 31765513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design, development and evaluation of a compact telerobotic catheter navigation system.
    Tavallaei MA; Gelman D; Lavdas MK; Skanes AC; Jones DL; Bax JS; Drangova M
    Int J Med Robot; 2016 Sep; 12(3):442-52. PubMed ID: 26525639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Virtual-Reality Simulator System for Double Interventional Cardiac Catheterization Using Fractional-Order Vascular Access Tracker and Haptic Force Producer.
    Chen GC; Lin CH; Li CM; Hsieh KS; Du YC; Chen T
    ScientificWorldJournal; 2015; 2015():697569. PubMed ID: 26171419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robotically-steerable catheters and their role in the visceral aortic segment.
    Riga C; Bicknell C; Hamady MS; Cheshire NJ
    J Cardiovasc Surg (Torino); 2011 Jun; 52(3):353-62. PubMed ID: 21577190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catheter kinematics for intracardiac navigation.
    Ganji Y; Janabi-Sharifi F
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):621-32. PubMed ID: 19174331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-Time Multi-Modal Sensing and Feedback for Catheterization in Porcine Tissue.
    Heunis CM; S Uligoj F; Santos CF; Misra S
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An in vitro investigation of image-guided steerable catheter navigation.
    Liu H; Fu YL; Zhou YY; Li HX; Liang ZG; Wang SG
    Proc Inst Mech Eng H; 2010; 224(8):945-54. PubMed ID: 20923113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and performance evaluation of a remote catheter navigation system.
    Thakur Y; Bax JS; Holdsworth DW; Drangova M
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1901-8. PubMed ID: 19336283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated Catheter Navigation With Electromagnetic Image Guidance.
    Jaeger HA; Nardelli P; O'Shea C; Tugwell J; Khan KA; Power T; O'Shea M; Kennedy MP; Cantillon-Murphy P
    IEEE Trans Biomed Eng; 2017 Aug; 64(8):1972-1979. PubMed ID: 28362578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electromagnetic tracking of flexible robotic catheters enables "assisted navigation" and brings automation to endovascular navigation in an in vitro study.
    Schwein A; Kramer B; Chinnadurai P; Virmani N; Walker S; O'Malley M; Lumsden AB; Bismuth J
    J Vasc Surg; 2018 Apr; 67(4):1274-1281. PubMed ID: 28583735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Research on real-time detection system of catheter delivering force in vascular interventional robots].
    Li H; Zhou H; Zhao Y; Zhang J; Zhang T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Apr; 39(2):359-369. PubMed ID: 35523558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A catheter side wall tactile sensor: design, modeling and experiments.
    Wang H; Liu PX; Guo S; Ye X
    Minim Invasive Ther Allied Technol; 2010; 19(1):52-60. PubMed ID: 20095899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Guidewire simulation of endovascular intervention: A systematic review.
    Qiu J; Ming J; Qian C; Chen Y; Gao D; Zhou S; Zhao G; Tang S; Xing L
    Int J Med Robot; 2022 Dec; 18(6):e2444. PubMed ID: 35923081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward multiple catheters detection in fluoroscopic image guided interventions.
    Yatziv L; Chartouni M; Datta S; Sapiro G
    IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):770-81. PubMed ID: 22389155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computer simulation as a component of catheter-based training.
    Dayal R; Faries PL; Lin SC; Bernheim J; Hollenbeck S; DeRubertis B; Trocciola S; Rhee J; McKinsey J; Morrissey NJ; Kent KC
    J Vasc Surg; 2004 Dec; 40(6):1112-7. PubMed ID: 15622364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.