These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30136209)

  • 41. Prior experience in micro-surgery may improve the surgeon's performance in robotic surgical training.
    Perez M; Perrenot C; Tran N; Hossu G; Felblinger J; Hubert J
    Int J Med Robot; 2013 Sep; 9(3):351-8. PubMed ID: 23733587
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Skeleton-based active catheter navigation.
    Fu Y; Liu H; Wang S; Deng W; Li X; Liang Z
    Int J Med Robot; 2009 Jun; 5(2):125-35. PubMed ID: 19177337
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design and Development of Surgeon Augmented Endovascular Robotic System.
    Sankaran NK; Chembrammel P; Siddiqui A; Snyder K; Kesavadas T
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2483-2493. PubMed ID: 29993507
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trading scalpels for sheaths: Catheter-based treatment of vascular injury can be effectively performed by acute care surgeons trained in endovascular techniques.
    Brenner M; Hoehn M; Teeter W; Stein D; Scalea T
    J Trauma Acute Care Surg; 2016 May; 80(5):783-6. PubMed ID: 26891154
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Current status of endovascular catheter robotics.
    Lumsden AB; Bismuth J
    J Cardiovasc Surg (Torino); 2018 Jun; 59(3):310-316. PubMed ID: 29480668
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tele-surgery simulation with a patient organ model for robotic surgery training.
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Konishi K; Kakeji Y; Hashizume M
    Int J Med Robot; 2005 Dec; 1(4):80-8. PubMed ID: 17518408
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design and performance evaluation of collision protection-based safety operation for a haptic robot-assisted catheter operating system.
    Zhang L; Guo S; Yu H; Song Y; Tamiya T; Hirata H; Ishihara H
    Biomed Microdevices; 2018 Feb; 20(2):22. PubMed ID: 29476379
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A first-in-man study of the role of flexible robotics in overcoming navigation challenges in the iliofemoral arteries.
    Bismuth J; Duran C; Stankovic M; Gersak B; Lumsden AB
    J Vasc Surg; 2013 Feb; 57(2 Suppl):14S-9S. PubMed ID: 23336849
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hierarchical HMM based learning of navigation primitives for cooperative robotic endovascular catheterization.
    Rafii-Tari H; Liu J; Payne CJ; Bicknell C; Yang GZ
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):496-503. PubMed ID: 25333155
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application study of medical robots in vascular intervention.
    Lu WS; Xu WY; Zhang J; Liu D; Wang DM; Jia P; Li ZC; Wang TM; Zhang DP; Tian ZM; Zeng Y
    Int J Med Robot; 2011 Sep; 7(3):361-6. PubMed ID: 21732523
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of robotic endovascular catheters in fenestrated stent grafting.
    Riga CV; Cheshire NJ; Hamady MS; Bicknell CD
    J Vasc Surg; 2010 Apr; 51(4):810-9; discussion 819-20. PubMed ID: 20347674
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery.
    Guo J; Guo S; Yu Y
    Biomed Microdevices; 2016 Oct; 18(5):76. PubMed ID: 27499092
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intravascular catheter navigation using path planning and virtual visual feedback for oral cancer treatment.
    Wang J; Ohya T; Liao H; Sakuma I; Wang T; Tohnai I; Iwai T
    Int J Med Robot; 2011 Jun; 7(2):214-24. PubMed ID: 21538770
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automatic tool segmentation and tracking during robotic intravascular catheterization for cardiac interventions.
    Omisore OM; Duan W; Du W; Zheng Y; Akinyemi T; Al-Handerish Y; Li W; Liu Y; Xiong J; Wang L
    Quant Imaging Med Surg; 2021 Jun; 11(6):2688-2710. PubMed ID: 34079734
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effectiveness of a dedicated robot-assisted surgery training program.
    Attalla K; Raza SJ; Rehman S; Din R; Stegemann A; Field E; Curti L; Sexton S; Bienko M; Bhandari M; Guru KA
    Can J Urol; 2013 Dec; 20(6):7084-90. PubMed ID: 24331355
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cognitive Task Analysis: Bringing Olympic Athlete Style Training to Surgical Education.
    Wingfield LR; Kulendran M; Chow A; Nehme J; Purkayastha S
    Surg Innov; 2015 Aug; 22(4):406-17. PubMed ID: 25392150
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experiments for the Development of a Steerable Microcatheter.
    Inaba Y; Arai Y; Sone M; Aramaki T; Osuga K; Tanaka H; Kanemasa K
    Cardiovasc Intervent Radiol; 2017 Dec; 40(12):1921-1926. PubMed ID: 28879604
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Real-time x-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions.
    Ma Y; Gogin N; Cathier P; Housden RJ; Gijsbers G; Cooklin M; O'Neill M; Gill J; Rinaldi CA; Razavi R; Rhode KS
    Med Phys; 2013 Jul; 40(7):071902. PubMed ID: 23822439
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conceptual design of a novel multi-DoF manual instrument for laparoscopic surgery.
    Wang X; Wang S; Li J; Zhang G; Wu Z
    Int J Med Robot; 2013 Mar; 9(1):75-82. PubMed ID: 22492688
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An intensive vascular surgical skills and simulation course for vascular trainees improves procedural knowledge and self-rated procedural competence.
    Robinson WP; Doucet DR; Simons JP; Wyman A; Aiello FA; Arous E; Schanzer A; Messina LM
    J Vasc Surg; 2017 Mar; 65(3):907-915.e3. PubMed ID: 28236930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.