BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30136227)

  • 21. K45A mutation of RIPK1 results in poor necroptosis and cytokine signaling in macrophages, which impacts inflammatory responses in vivo.
    Shutinoski B; Alturki NA; Rijal D; Bertin J; Gough PJ; Schlossmacher MG; Sad S
    Cell Death Differ; 2016 Oct; 23(10):1628-37. PubMed ID: 27258786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of Necroptosis by Phospho-RIPK3 Immunohistochemical Labeling.
    Webster JD; Solon M; Haller S; Newton K
    Methods Mol Biol; 2018; 1857():153-160. PubMed ID: 30136239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RIPK1-RIPK3-MLKL-dependent necrosis promotes the aging of mouse male reproductive system.
    Li D; Meng L; Xu T; Su Y; Liu X; Zhang Z; Wang X
    Elife; 2017 Aug; 6():. PubMed ID: 28807105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RIPK1 can function as an inhibitor rather than an initiator of RIPK3-dependent necroptosis.
    Kearney CJ; Cullen SP; Clancy D; Martin SJ
    FEBS J; 2014 Nov; 281(21):4921-34. PubMed ID: 25195660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death.
    Jacobsen AV; Lowes KN; Tanzer MC; Lucet IS; Hildebrand JM; Petrie EJ; van Delft MF; Liu Z; Conos SA; Zhang JG; Huang DC; Silke J; Lessene G; Murphy JM
    Cell Death Dis; 2016 Jan; 7(1):e2051. PubMed ID: 26775703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Necroptosis signalling is tuned by phosphorylation of MLKL residues outside the pseudokinase domain activation loop.
    Tanzer MC; Tripaydonis A; Webb AI; Young SN; Varghese LN; Hall C; Alexander WS; Hildebrand JM; Silke J; Murphy JM
    Biochem J; 2015 Oct; 471(2):255-65. PubMed ID: 26283547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis.
    Newton K; Dugger DL; Wickliffe KE; Kapoor N; de Almagro MC; Vucic D; Komuves L; Ferrando RE; French DM; Webster J; Roose-Girma M; Warming S; Dixit VM
    Science; 2014 Mar; 343(6177):1357-60. PubMed ID: 24557836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RIPK1 and RIPK3: critical regulators of inflammation and cell death.
    Newton K
    Trends Cell Biol; 2015 Jun; 25(6):347-53. PubMed ID: 25662614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3.
    Seo J; Lee EW; Sung H; Seong D; Dondelinger Y; Shin J; Jeong M; Lee HK; Kim JH; Han SY; Lee C; Seong JK; Vandenabeele P; Song J
    Nat Cell Biol; 2016 Mar; 18(3):291-302. PubMed ID: 26900751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it.
    Yoon S; Bogdanov K; Kovalenko A; Wallach D
    Cell Death Differ; 2016 Feb; 23(2):253-60. PubMed ID: 26184911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Necroptosis and Inflammation.
    Newton K; Manning G
    Annu Rev Biochem; 2016 Jun; 85():743-63. PubMed ID: 26865533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and Characterization of NTB451 as a Potential Inhibitor of Necroptosis.
    In EJ; Lee Y; Koppula S; Kim TY; Han JH; Lee KH; Kang TB
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30400632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MLKL-PITPα signaling-mediated necroptosis contributes to cisplatin-triggered cell death in lung cancer A549 cells.
    Jing L; Song F; Liu Z; Li J; Wu B; Fu Z; Jiang J; Chen Z
    Cancer Lett; 2018 Feb; 414():136-146. PubMed ID: 29104146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TRAF2 is a biologically important necroptosis suppressor.
    Petersen SL; Chen TT; Lawrence DA; Marsters SA; Gonzalvez F; Ashkenazi A
    Cell Death Differ; 2015 Nov; 22(11):1846-57. PubMed ID: 25882049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 24(S)-Hydroxycholesterol induces RIPK1-dependent but MLKL-independent cell death in the absence of caspase-8.
    Vo DK; Urano Y; Takabe W; Saito Y; Noguchi N
    Steroids; 2015 Jul; 99(Pt B):230-7. PubMed ID: 25697054
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tools in the Art of Studying Necroptosis.
    Ting AT
    Methods Mol Biol; 2018; 1857():1-9. PubMed ID: 30136225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells.
    Saveljeva S; Mc Laughlin SL; Vandenabeele P; Samali A; Bertrand MJ
    Cell Death Dis; 2015 Jan; 6(1):e1587. PubMed ID: 25569104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis.
    Alvarez-Diaz S; Dillon CP; Lalaoui N; Tanzer MC; Rodriguez DA; Lin A; Lebois M; Hakem R; Josefsson EC; O'Reilly LA; Silke J; Alexander WS; Green DR; Strasser A
    Immunity; 2016 Sep; 45(3):513-526. PubMed ID: 27523270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Critical contribution of oxidative stress to TNFα-induced necroptosis downstream of RIPK1 activation.
    Shindo R; Kakehashi H; Okumura K; Kumagai Y; Nakano H
    Biochem Biophys Res Commun; 2013 Jun; 436(2):212-6. PubMed ID: 23727581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The diverse role of RIP kinases in necroptosis and inflammation.
    Silke J; Rickard JA; Gerlic M
    Nat Immunol; 2015 Jul; 16(7):689-97. PubMed ID: 26086143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.