BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30136317)

  • 1. Regulation of the Gid ubiquitin ligase recognition subunit Gid4.
    Menssen R; Bui K; Wolf DH
    FEBS Lett; 2018 Oct; 592(19):3286-3294. PubMed ID: 30136317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism.
    Santt O; Pfirrmann T; Braun B; Juretschke J; Kimmig P; Scheel H; Hofmann K; Thumm M; Wolf DH
    Mol Biol Cell; 2008 Aug; 19(8):3323-33. PubMed ID: 18508925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the topology of the Gid complex, the E3 ubiquitin ligase involved in catabolite-induced degradation of gluconeogenic enzymes.
    Menssen R; Schweiggert J; Schreiner J; Kusevic D; Reuther J; Braun B; Wolf DH
    J Biol Chem; 2012 Jul; 287(30):25602-14. PubMed ID: 22645139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of nonproline N-terminal residues by the Pro/N-degron pathway.
    Dong C; Chen SJ; Melnykov A; Weirich S; Sun K; Jeltsch A; Varshavsky A; Min J
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14158-14167. PubMed ID: 32513738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The E3 ubiquitin ligase Pib1 regulates effective gluconeogenic shutdown upon glucose availability.
    Vengayil V; Rashida Z; Laxman S
    J Biol Chem; 2019 Nov; 294(46):17209-17223. PubMed ID: 31604822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A GID E3 ligase assembly ubiquitinates an Rsp5 E3 adaptor and regulates plasma membrane transporters.
    Langlois CR; Beier V; Karayel O; Chrustowicz J; Sherpa D; Mann M; Schulman BA
    EMBO Rep; 2022 Jun; 23(6):e53835. PubMed ID: 35437932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Cdc48-Ufd1-Npl4 complex is central in ubiquitin-proteasome triggered catabolite degradation of fructose-1,6-bisphosphatase.
    Barbin L; Eisele F; Santt O; Wolf DH
    Biochem Biophys Res Commun; 2010 Apr; 394(2):335-41. PubMed ID: 20206597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gid9, a second RING finger protein contributes to the ubiquitin ligase activity of the Gid complex required for catabolite degradation.
    Braun B; Pfirrmann T; Menssen R; Hofmann K; Scheel H; Wolf DH
    FEBS Lett; 2011 Dec; 585(24):3856-61. PubMed ID: 22044534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of yeast Gid10 in complex with Pro/N-degron.
    Shin JS; Park SH; Kim L; Heo J; Song HK
    Biochem Biophys Res Commun; 2021 Dec; 582():86-92. PubMed ID: 34695755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes.
    Chen SJ; Wu X; Wadas B; Oh JH; Varshavsky A
    Science; 2017 Jan; 355(6323):. PubMed ID: 28126757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interconversion between Anticipatory and Active GID E3 Ubiquitin Ligase Conformations via Metabolically Driven Substrate Receptor Assembly.
    Qiao S; Langlois CR; Chrustowicz J; Sherpa D; Karayel O; Hansen FM; Beier V; von Gronau S; Bollschweiler D; Schäfer T; Alpi AF; Mann M; Prabu JR; Schulman BA
    Mol Cell; 2020 Jan; 77(1):150-163.e9. PubMed ID: 31708416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Timer-based proteomic profiling of the ubiquitin-proteasome system reveals a substrate receptor of the GID ubiquitin ligase.
    Kong KE; Fischer B; Meurer M; Kats I; Li Z; Rühle F; Barry JD; Kirrmaier D; Chevyreva V; San Luis BJ; Costanzo M; Huber W; Andrews BJ; Boone C; Knop M; Khmelinskii A
    Mol Cell; 2021 Jun; 81(11):2460-2476.e11. PubMed ID: 33974913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of Substrates and Components of the Pro/N-Degron Pathway.
    Chen SJ; Melnykov A; Varshavsky A
    Biochemistry; 2020 Feb; 59(4):582-593. PubMed ID: 31895557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Hsp70 chaperone Ssa1 is essential for catabolite induced degradation of the gluconeogenic enzyme fructose-1,6-bisphosphatase.
    Juretschke J; Menssen R; Sickmann A; Wolf DH
    Biochem Biophys Res Commun; 2010 Jul; 397(3):447-52. PubMed ID: 20513352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryo-EM structures of Gid12-bound GID E3 reveal steric blockade as a mechanism inhibiting substrate ubiquitylation.
    Qiao S; Lee CW; Sherpa D; Chrustowicz J; Cheng J; Duennebacke M; Steigenberger B; Karayel O; Vu DT; von Gronau S; Mann M; Wilfling F; Schulman BA
    Nat Commun; 2022 Jun; 13(1):3041. PubMed ID: 35650207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gid10 as an alternative N-recognin of the Pro/N-degron pathway.
    Melnykov A; Chen SJ; Varshavsky A
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):15914-15923. PubMed ID: 31337681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae.
    Singh RK; Gonzalez M; Kabbaj MH; Gunjan A
    PLoS One; 2012; 7(5):e36295. PubMed ID: 22570702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Gid-complex: an emerging player in the ubiquitin ligase league.
    Liu H; Pfirrmann T
    Biol Chem; 2019 Oct; 400(11):1429-1441. PubMed ID: 30893051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of the gluconeogenic enzyme, Pck1, via the Gid4 E3 ligase: An in silico perspective.
    Ismail AM; Elfiky AA; Elshemey WM
    J Mol Recognit; 2020 Mar; 33(3):e2821. PubMed ID: 31883179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of mutations of GID protein-coding genes on malate production and enzyme expression profiles in Saccharomyces cerevisiae.
    Negoro H; Matsumura K; Matsuda F; Shimizu H; Hata Y; Ishida H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4971-4983. PubMed ID: 32248437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.