These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 30136585)
41. Ti(4+)-phosphate functionalized cellulose for phosphopeptides enrichment and its application in rice phosphoproteome analysis. Shen F; Hu Y; Guan P; Ren X J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Aug; 902():108-15. PubMed ID: 22795554 [TBL] [Abstract][Full Text] [Related]
42. Ti Xiong Z; Zhang L; Fang C; Zhang Q; Ji Y; Zhang Z; Zhang W; Zou H J Mater Chem B; 2014 Jul; 2(28):4473-4480. PubMed ID: 32261549 [TBL] [Abstract][Full Text] [Related]
43. Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment. Zhou H; Low TY; Hennrich ML; van der Toorn H; Schwend T; Zou H; Mohammed S; Heck AJ Mol Cell Proteomics; 2011 Oct; 10(10):M110.006452. PubMed ID: 21715320 [TBL] [Abstract][Full Text] [Related]
44. Nanoprobe-based immobilized metal affinity chromatography for sensitive and complementary enrichment of multiply phosphorylated peptides. Wu HT; Hsu CC; Tsai CF; Lin PC; Lin CC; Chen YJ Proteomics; 2011 Jul; 11(13):2639-53. PubMed ID: 21630456 [TBL] [Abstract][Full Text] [Related]
46. Dual-functionalized magnetic bimetallic metal-organic framework composite for highly specific enrichments of phosphopeptides and glycopeptides. Pan Y; Zhang C; Xiao R; Zhang L; Zhang W Anal Chim Acta; 2021 May; 1158():338412. PubMed ID: 33863420 [TBL] [Abstract][Full Text] [Related]
47. Facile Preparation of Core-Shell Magnetic Metal-Organic Framework Nanoparticles for the Selective Capture of Phosphopeptides. Chen Y; Xiong Z; Peng L; Gan Y; Zhao Y; Shen J; Qian J; Zhang L; Zhang W ACS Appl Mater Interfaces; 2015 Aug; 7(30):16338-47. PubMed ID: 26156207 [TBL] [Abstract][Full Text] [Related]
48. Bifunctional super-hydrophilic mesoporous nanocomposite: a novel nanoprobe for investigation of glycosylation and phosphorylation in Alzheimer's disease. Yi L; Fu M; Shao Y; Tang K; Yan Y; Ding CF J Chromatogr A; 2022 Aug; 1676():463236. PubMed ID: 35709605 [TBL] [Abstract][Full Text] [Related]
49. Facile synthesis of Ti He Y; Zhang S; Zhong C; Yang Y; Li G; Ji Y; Lin Z Talanta; 2021 Dec; 235():122789. PubMed ID: 34517647 [TBL] [Abstract][Full Text] [Related]
50. Fabrication of magnetic dual-hydrophilic metal organic framework for highly efficient glycopeptide enrichment. Su P; Wang Z; Li X; Li M; Li G; Gong Z; Song J; Yang Y Anal Bioanal Chem; 2021 Sep; 413(21):5267-5278. PubMed ID: 34331089 [TBL] [Abstract][Full Text] [Related]
51. Hydrophilic polydopamine-derived mesoporous channels for loading Ti(IV) ions for salivary phosphoproteome research. Xu Z; Wu Y; Wu H; Sun N; Deng C Anal Chim Acta; 2021 Feb; 1146():53-60. PubMed ID: 33461719 [TBL] [Abstract][Full Text] [Related]
52. Interface-Engineered Hollow Nanospheres with Titanium(IV) Binding Sites and Microwindows as Affinity Probes for Ultrafast and Enhanced Phosphopeptides Enrichment. Li X; Ma S; Tang R; Ou J Anal Chem; 2022 Mar; 94(12):5159-5166. PubMed ID: 35300494 [TBL] [Abstract][Full Text] [Related]
53. Development of an enrichment method for endogenous phosphopeptide characterization in human serum. La Barbera G; Capriotti AL; Cavaliere C; Ferraris F; Laus M; Piovesana S; Sparnacci K; Laganà A Anal Bioanal Chem; 2018 Jan; 410(3):1177-1185. PubMed ID: 29318361 [TBL] [Abstract][Full Text] [Related]
54. Monodisperse Ti Wang H; Tang R; Jia S; Ma S; Gong B; Ou J Mikrochim Acta; 2022 Oct; 189(11):405. PubMed ID: 36197509 [TBL] [Abstract][Full Text] [Related]
55. Facile Preparation of Titanium(IV)-Immobilized Hierarchically Porous Hybrid Monoliths. Zhang H; Ou J; Yao Y; Wang H; Liu Z; Wei Y; Ye M Anal Chem; 2017 Apr; 89(8):4655-4662. PubMed ID: 28316239 [TBL] [Abstract][Full Text] [Related]
56. Facile preparation of titanium phosphate-modified chitosan for selective capture of phosphopeptides. Shen F; Hu Y; Guan P; Ren X J Sep Sci; 2013 Feb; 36(3):540-7. PubMed ID: 23281309 [TBL] [Abstract][Full Text] [Related]
57. Highly efficient and selective enrichment of glycopeptides using easily synthesized magG/PDA/Au/l-Cys composites. Wu R; Li L; Deng C Proteomics; 2016 May; 16(9):1311-20. PubMed ID: 26888493 [TBL] [Abstract][Full Text] [Related]
58. Facile preparation of molybdenum (VI) oxide - Modified graphene oxide nanocomposite for specific enrichment of phosphopeptides. Sun H; Zhang Q; Zhang L; Zhang W; Zhang L J Chromatogr A; 2017 Oct; 1521():36-43. PubMed ID: 28947203 [TBL] [Abstract][Full Text] [Related]
59. Bifunctional magnetic covalent organic framework for simultaneous enrichment of phosphopeptides and glycopeptides. Luo B; Yan S; Zhang Y; Zhou J; Lan F; Wu Y Anal Chim Acta; 2021 Sep; 1177():338761. PubMed ID: 34482887 [TBL] [Abstract][Full Text] [Related]