BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 30136622)

  • 1. Hypocretin Mediates Sleep and Wake Disturbances in a Mouse Model of Traumatic Brain Injury.
    Thomasy HE; Opp MR
    J Neurotrauma; 2019 Mar; 36(5):802-814. PubMed ID: 30136622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep-wake characteristics in a mouse model of severe traumatic brain injury: Relation to posttraumatic epilepsy.
    Konduru SS; Wallace EP; Pfammatter JA; Rodrigues PV; Jones MV; Maganti RK
    Epilepsia Open; 2021 Mar; 6(1):181-194. PubMed ID: 33681661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury.
    Thomasy HE; Febinger HY; Ringgold KM; Gemma C; Opp MR
    Neurobiol Sleep Circadian Rhythms; 2017 Jan; 2():71-84. PubMed ID: 31236496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need.
    Vassalli A; Franken P
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):E5464-E5473. PubMed ID: 28630298
    [No Abstract]   [Full Text] [Related]  

  • 5. Sleep-Wake Disturbances After Traumatic Brain Injury: Synthesis of Human and Animal Studies.
    Sandsmark DK; Elliott JE; Lim MM
    Sleep; 2017 May; 40(5):. PubMed ID: 28329120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary therapy restores glutamatergic input to orexin/hypocretin neurons after traumatic brain injury in mice.
    Elliott JE; De Luche SE; Churchill MJ; Moore C; Cohen AS; Meshul CK; Lim MM
    Sleep; 2018 Mar; 41(3):. PubMed ID: 29315422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of cardiovascular variability during undisturbed wake-sleep behavior in hypocretin-deficient mice.
    Silvani A; Bastianini S; Berteotti C; Lo Martire V; Zoccoli G
    Am J Physiol Regul Integr Comp Physiol; 2012 Apr; 302(8):R958-64. PubMed ID: 22357806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased Sleep Need and Reduction of Tuberomammillary Histamine Neurons after Rodent Traumatic Brain Injury.
    Noain D; Büchele F; Schreglmann SR; Valko PO; Gavrilov YV; Morawska MM; Imbach LL; Baumann CR
    J Neurotrauma; 2018 Jan; 35(1):85-93. PubMed ID: 28762870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mild Traumatic Brain Injury Affects Orexin/Hypocretin Physiology Differently in Male and Female Mice.
    Somach RT; Jean ID; Farrugia AM; Cohen AS
    J Neurotrauma; 2023 Oct; 40(19-20):2146-2163. PubMed ID: 37476962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interplay between neuroendocrine and sleep alterations following traumatic brain injury.
    Howell S; Griesbach GS
    NeuroRehabilitation; 2018; 43(3):327-345. PubMed ID: 30347624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic decrease in wakefulness and disruption of sleep-wake behavior after experimental traumatic brain injury.
    Skopin MD; Kabadi SV; Viechweg SS; Mong JA; Faden AI
    J Neurotrauma; 2015 Mar; 32(5):289-96. PubMed ID: 25242371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep related changes in blood pressure in hypocretin-deficient narcoleptic mice.
    Bastianini S; Silvani A; Berteotti C; Elghozi JL; Franzini C; Lenzi P; Lo Martire V; Zoccoli G
    Sleep; 2011 Feb; 34(2):213-8. PubMed ID: 21286242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sleep-wake disturbances 6 months after traumatic brain injury: a prospective study.
    Baumann CR; Werth E; Stocker R; Ludwig S; Bassetti CL
    Brain; 2007 Jul; 130(Pt 7):1873-83. PubMed ID: 17584779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient disruption of mouse home cage activities and assessment of orexin immunoreactivity following concussive- or blast-induced brain injury.
    Vu PA; Tucker LB; Liu J; McNamara EH; Tran T; Fu AH; Kim Y; McCabe JT
    Brain Res; 2018 Dec; 1700():138-151. PubMed ID: 30176241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy.
    Williams RH; Tsunematsu T; Thomas AM; Bogyo K; Yamanaka A; Kilduff TS
    J Neurosci; 2019 Nov; 39(47):9435-9452. PubMed ID: 31628177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio.
    Holm A; Possovre ML; Bandarabadi M; Moseholm KF; Justinussen JL; Bozic I; Lemcke R; Arribat Y; Amati F; Silahtaroglu A; Juventin M; Adamantidis A; Tafti M; Kornum BR
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2112225119. PubMed ID: 35452310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral and sleep/wake characteristics of mice lacking norepinephrine and hypocretin.
    Hunsley MS; Curtis WR; Palmiter RD
    Genes Brain Behav; 2006 Aug; 5(6):451-7. PubMed ID: 16923149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG) increase REM sleep in hypocretin knockout mice.
    Kaur S; Thankachan S; Begum S; Liu M; Blanco-Centurion C; Shiromani PJ
    PLoS One; 2009 Jul; 4(7):e6346. PubMed ID: 19623260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune-endocrine interactions in the pathophysiology of sleep-wake disturbances following traumatic brain injury: A narrative review.
    Rowe RK; Griesbach GS
    Brain Res Bull; 2022 Jul; 185():117-128. PubMed ID: 35537569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of hypocretin attenuates behavioral changes produced by glutamatergic activation of the perifornical-lateral hypothalamic area.
    Kostin A; Siegel JM; Alam MN
    Sleep; 2014 May; 37(5):1011-20. PubMed ID: 24790280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.