These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 30136622)

  • 1. Hypocretin Mediates Sleep and Wake Disturbances in a Mouse Model of Traumatic Brain Injury.
    Thomasy HE; Opp MR
    J Neurotrauma; 2019 Mar; 36(5):802-814. PubMed ID: 30136622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep-wake characteristics in a mouse model of severe traumatic brain injury: Relation to posttraumatic epilepsy.
    Konduru SS; Wallace EP; Pfammatter JA; Rodrigues PV; Jones MV; Maganti RK
    Epilepsia Open; 2021 Mar; 6(1):181-194. PubMed ID: 33681661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury.
    Thomasy HE; Febinger HY; Ringgold KM; Gemma C; Opp MR
    Neurobiol Sleep Circadian Rhythms; 2017 Jan; 2():71-84. PubMed ID: 31236496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need.
    Vassalli A; Franken P
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):E5464-E5473. PubMed ID: 28630298
    [No Abstract]   [Full Text] [Related]  

  • 5. Sleep-Wake Disturbances After Traumatic Brain Injury: Synthesis of Human and Animal Studies.
    Sandsmark DK; Elliott JE; Lim MM
    Sleep; 2017 May; 40(5):. PubMed ID: 28329120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary therapy restores glutamatergic input to orexin/hypocretin neurons after traumatic brain injury in mice.
    Elliott JE; De Luche SE; Churchill MJ; Moore C; Cohen AS; Meshul CK; Lim MM
    Sleep; 2018 Mar; 41(3):. PubMed ID: 29315422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of cardiovascular variability during undisturbed wake-sleep behavior in hypocretin-deficient mice.
    Silvani A; Bastianini S; Berteotti C; Lo Martire V; Zoccoli G
    Am J Physiol Regul Integr Comp Physiol; 2012 Apr; 302(8):R958-64. PubMed ID: 22357806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased Sleep Need and Reduction of Tuberomammillary Histamine Neurons after Rodent Traumatic Brain Injury.
    Noain D; Büchele F; Schreglmann SR; Valko PO; Gavrilov YV; Morawska MM; Imbach LL; Baumann CR
    J Neurotrauma; 2018 Jan; 35(1):85-93. PubMed ID: 28762870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interplay between neuroendocrine and sleep alterations following traumatic brain injury.
    Howell S; Griesbach GS
    NeuroRehabilitation; 2018; 43(3):327-345. PubMed ID: 30347624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mild Traumatic Brain Injury Affects Orexin/Hypocretin Physiology Differently in Male and Female Mice.
    Somach RT; Jean ID; Farrugia AM; Cohen AS
    J Neurotrauma; 2023 Oct; 40(19-20):2146-2163. PubMed ID: 37476962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic decrease in wakefulness and disruption of sleep-wake behavior after experimental traumatic brain injury.
    Skopin MD; Kabadi SV; Viechweg SS; Mong JA; Faden AI
    J Neurotrauma; 2015 Mar; 32(5):289-96. PubMed ID: 25242371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep related changes in blood pressure in hypocretin-deficient narcoleptic mice.
    Bastianini S; Silvani A; Berteotti C; Elghozi JL; Franzini C; Lenzi P; Lo Martire V; Zoccoli G
    Sleep; 2011 Feb; 34(2):213-8. PubMed ID: 21286242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sleep-wake disturbances 6 months after traumatic brain injury: a prospective study.
    Baumann CR; Werth E; Stocker R; Ludwig S; Bassetti CL
    Brain; 2007 Jul; 130(Pt 7):1873-83. PubMed ID: 17584779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient disruption of mouse home cage activities and assessment of orexin immunoreactivity following concussive- or blast-induced brain injury.
    Vu PA; Tucker LB; Liu J; McNamara EH; Tran T; Fu AH; Kim Y; McCabe JT
    Brain Res; 2018 Dec; 1700():138-151. PubMed ID: 30176241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy.
    Williams RH; Tsunematsu T; Thomas AM; Bogyo K; Yamanaka A; Kilduff TS
    J Neurosci; 2019 Nov; 39(47):9435-9452. PubMed ID: 31628177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio.
    Holm A; Possovre ML; Bandarabadi M; Moseholm KF; Justinussen JL; Bozic I; Lemcke R; Arribat Y; Amati F; Silahtaroglu A; Juventin M; Adamantidis A; Tafti M; Kornum BR
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2112225119. PubMed ID: 35452310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral and sleep/wake characteristics of mice lacking norepinephrine and hypocretin.
    Hunsley MS; Curtis WR; Palmiter RD
    Genes Brain Behav; 2006 Aug; 5(6):451-7. PubMed ID: 16923149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG) increase REM sleep in hypocretin knockout mice.
    Kaur S; Thankachan S; Begum S; Liu M; Blanco-Centurion C; Shiromani PJ
    PLoS One; 2009 Jul; 4(7):e6346. PubMed ID: 19623260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune-endocrine interactions in the pathophysiology of sleep-wake disturbances following traumatic brain injury: A narrative review.
    Rowe RK; Griesbach GS
    Brain Res Bull; 2022 Jul; 185():117-128. PubMed ID: 35537569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of hypocretin attenuates behavioral changes produced by glutamatergic activation of the perifornical-lateral hypothalamic area.
    Kostin A; Siegel JM; Alam MN
    Sleep; 2014 May; 37(5):1011-20. PubMed ID: 24790280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.