BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 30136798)

  • 1. [PERIFOCAL TISSUE REACTIONS TO IMPLANTATION OF THE SAMPLES OF HYDROGEL MATERIAL BASED ON POLYACRYLAMIDE WITH THE ADDITION OF THE CELLULOSE (AN EXPERIMENTAL STUDY)].
    Bozhkova SA; Buyanov AL; Kochish AY; Rumakin VP; Khripunov AK; Netyl’ko GI; Smyslov RY; Afanasyev AV; Panarin YF
    Morfologiia; 2016; 149(2):47-53. PubMed ID: 30136798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological responses of novel high-toughness double network hydrogels in muscle and the subcutaneous tissues.
    Tanabe Y; Yasuda K; Azuma C; Taniguro H; Onodera S; Suzuki A; Chen YM; Gong JP; Osada Y
    J Mater Sci Mater Med; 2008 Mar; 19(3):1379-87. PubMed ID: 17914620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue responses to thermally-responsive hydrogel nanoparticles.
    Weng H; Zhou J; Tang L; Hu Z
    J Biomater Sci Polym Ed; 2004; 15(9):1167-80. PubMed ID: 15503633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters.
    Yuan N; Xu L; Zhang L; Ye H; Zhao J; Liu Z; Rong J
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():221-230. PubMed ID: 27287117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel.
    Bichara DA; Bodugoz-Sentruk H; Ling D; Malchau E; Bragdon CR; Muratoglu OK
    Biomed Mater; 2014 Aug; 9(4):045012. PubMed ID: 25050611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-strength cellulose-polyacrylamide hydrogels: Mechanical behavior and structure depending on the type of cellulose.
    Buyanov AL; Gofman IV; Saprykina NN
    J Mech Behav Biomed Mater; 2019 Dec; 100():103385. PubMed ID: 31400696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of two novel dermal fillers: histological evaluation of implants of a hyaluronic acid filler and a polyacrylamide filler.
    Fernández-Cossío S; Castaño-Oreja MT
    Plast Reconstr Surg; 2006 May; 117(6):1789-96. PubMed ID: 16651952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic swelling and mechanical behavior of composite bacterial cellulose-poly(acrylamide or acrylamide-sodium acrylate) hydrogels.
    Buyanov AL; Gofman IV; Revel'skaya LG; Khripunov AK; Tkachenko AA
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):102-11. PubMed ID: 19878907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Experiments on new synthetic and non-absorbable surgical threads].
    Juszkiewicz M
    Polim Med; 1998; 28(1-2):33-58. PubMed ID: 9513257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Estimation of biocompatibility of fibers with large mechanical resistance].
    Zywicka B
    Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea.
    Zheng LL; Vanchinathan V; Dalal R; Noolandi J; Waters DJ; Hartmann L; Cochran JR; Frank CW; Yu CQ; Ta CN
    J Biomed Mater Res A; 2015 Oct; 103(10):3157-65. PubMed ID: 25778285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo biocompatibility of bacterial cellulose.
    Helenius G; Bäckdahl H; Bodin A; Nannmark U; Gatenholm P; Risberg B
    J Biomed Mater Res A; 2006 Feb; 76(2):431-8. PubMed ID: 16278860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility of the bacterial cellulose hydrogel in subcutaneous tissue of rabbits.
    Pita PC; Pinto FC; Lira MM; Melo Fde A; Ferreira LM; Aguiar JL
    Acta Cir Bras; 2015 Apr; 30(4):296-300. PubMed ID: 25923263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration.
    Martínez Ávila H; Schwarz S; Feldmann EM; Mantas A; von Bomhard A; Gatenholm P; Rotter N
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7423-35. PubMed ID: 24866945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational analysis of cartilage implants based on an interpenetrated polymer network for tissue repairing.
    Manzano S; Poveda-Reyes S; Ferrer GG; Ochoa I; Hamdy Doweidar M
    Comput Methods Programs Biomed; 2014 Oct; 116(3):249-59. PubMed ID: 24997064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the biocompatibility of regenerated cellulose hydrogels with high strength and transparency for ocular applications.
    Patchan MW; Chae JJ; Lee JD; Calderon-Colon X; Maranchi JP; McCally RL; Schein OD; Elisseeff JH; Trexler MM
    J Biomater Appl; 2016 Feb; 30(7):1049-59. PubMed ID: 26589295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds.
    Holland TA; Bodde EW; Baggett LS; Tabata Y; Mikos AG; Jansen JA
    J Biomed Mater Res A; 2005 Oct; 75(1):156-67. PubMed ID: 16052490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of graphene oxide/polyacrylamide composite hydrogel and its effect on Schwann cells attachment and proliferation.
    Li G; Zhao Y; Zhang L; Gao M; Kong Y; Yang Y
    Colloids Surf B Biointerfaces; 2016 Jul; 143():547-556. PubMed ID: 27058512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility of chemoenzymatically derived dextran-acrylate hydrogels.
    Ferreira L; Rafael A; Lamghari M; Barbosa MA; Gil MH; Cabrita AM; Dordick JS
    J Biomed Mater Res A; 2004 Mar; 68(3):584-96. PubMed ID: 14762939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwaved bacterial cellulose-based hydrogel microparticles for the healing of partial thickness burn wounds.
    Pandey M; Mohamad N; Low WL; Martin C; Mohd Amin MC
    Drug Deliv Transl Res; 2017 Feb; 7(1):89-99. PubMed ID: 27815776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.