These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 30136846)
1. Condensation Heat-Transfer Performance of Thermally Stable Superhydrophobic Cerium-Oxide Surfaces. Shim J; Seo D; Oh S; Lee J; Nam Y ACS Appl Mater Interfaces; 2018 Sep; 10(37):31765-31776. PubMed ID: 30136846 [TBL] [Abstract][Full Text] [Related]
2. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation. Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672 [TBL] [Abstract][Full Text] [Related]
3. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces. Miljkovic N; Preston DJ; Enright R; Wang EN ACS Nano; 2013 Dec; 7(12):11043-54. PubMed ID: 24261667 [TBL] [Abstract][Full Text] [Related]
4. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. Miljkovic N; Enright R; Wang EN ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016 [TBL] [Abstract][Full Text] [Related]
5. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation. Chehrghani MM; Abbasiasl T; Sadaghiani AK; Koşar A Langmuir; 2021 Nov; 37(46):13567-13575. PubMed ID: 34751032 [TBL] [Abstract][Full Text] [Related]
6. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces. Li G; Alhosani MH; Yuan S; Liu H; Ghaferi AA; Zhang T Langmuir; 2014 Dec; 30(48):14498-511. PubMed ID: 25419845 [TBL] [Abstract][Full Text] [Related]
7. Dropwise Condensate Comb for Enhanced Heat Transfer. Tang Y; Yang X; Wang L; Li Y; Zhu D ACS Appl Mater Interfaces; 2023 May; 15(17):21549-21561. PubMed ID: 37083343 [TBL] [Abstract][Full Text] [Related]
9. Ultrahigh Subcooling Dropwise Condensation Heat Transfer on Slippery Liquid-like Monolayer Grafted Surfaces. Huang TE; Lu Y; Wei Z; Li D; Li QY; Wang Z; Takahashi K; Orejon D; Zhang P ACS Appl Mater Interfaces; 2024 Oct; 16(39):53285-53298. PubMed ID: 39295174 [TBL] [Abstract][Full Text] [Related]
10. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Miljkovic N; Enright R; Nam Y; Lopez K; Dou N; Sack J; Wang EN Nano Lett; 2013 Jan; 13(1):179-87. PubMed ID: 23190055 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of Dropwise Condensation Heat Transfer through a Sprayable Superhydrophobic Coating. Rezaee B; Mahlouji Taheri M; Pakzad H; Fakhri M; Moosavi A; Aryanpour M Langmuir; 2023 Jun; 39(23):8354-8366. PubMed ID: 37267064 [TBL] [Abstract][Full Text] [Related]
12. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation. Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806 [TBL] [Abstract][Full Text] [Related]
13. Flow condensation on copper-based nanotextured superhydrophobic surfaces. Torresin D; Tiwari MK; Del Col D; Poulikakos D Langmuir; 2013 Jan; 29(2):840-8. PubMed ID: 23249322 [TBL] [Abstract][Full Text] [Related]
14. Rationally 3D-Textured Copper Surfaces for Laplace Pressure Imbalance-Induced Enhancement in Dropwise Condensation. Sharma CS; Stamatopoulos C; Suter R; von Rohr PR; Poulikakos D ACS Appl Mater Interfaces; 2018 Aug; 10(34):29127-29135. PubMed ID: 30067013 [TBL] [Abstract][Full Text] [Related]
15. Effect of Surface Structure Complexity on Interfacial Droplet Behavior of Superhydrophobic Titanium Surfaces for Robust Dropwise Condensation. Jeong JU; Ji DY; Lee KY; Hwang W; Lee CH; Kim SJ; Lee JW Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361301 [TBL] [Abstract][Full Text] [Related]
16. Investigation of Dropwise Condensation Heat Transfer on Laser-Ablated Superhydrophobic/Hydrophilic Hybrid Copper Surfaces. Song Z; Lu M; Chen X ACS Omega; 2020 Sep; 5(37):23588-23595. PubMed ID: 32984678 [TBL] [Abstract][Full Text] [Related]
17. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces. Birbarah P; Li Z; Pauls A; Miljkovic N Langmuir; 2015 Jul; 31(28):7885-96. PubMed ID: 26110977 [TBL] [Abstract][Full Text] [Related]
18. Quasi-Liquid Surfaces for Sustainable High-Performance Steam Condensation. Monga D; Guo Z; Shan L; Taba SA; Sarma J; Dai X ACS Appl Mater Interfaces; 2022 Mar; 14(11):13932-13941. PubMed ID: 35287435 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures. Zhang P; Maeda Y; Lv F; Takata Y; Orejon D ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681 [TBL] [Abstract][Full Text] [Related]
20. Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces. Yan X; Huang Z; Sett S; Oh J; Cha H; Li L; Feng L; Wu Y; Zhao C; Orejon D; Chen F; Miljkovic N ACS Nano; 2019 Apr; 13(4):4160-4173. PubMed ID: 30933473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]