These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 30136846)

  • 21. Stable Dropwise Condensation of Ethanol and Hexane on Rationally Designed Ultrascalable Nanostructured Lubricant-Infused Surfaces.
    Sett S; Sokalski P; Boyina K; Li L; Rabbi KF; Auby H; Foulkes T; Mahvi A; Barac G; Bolton LW; Miljkovic N
    Nano Lett; 2019 Aug; 19(8):5287-5296. PubMed ID: 31328924
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microdroplet growth mechanism during water condensation on superhydrophobic surfaces.
    Rykaczewski K
    Langmuir; 2012 May; 28(20):7720-9. PubMed ID: 22548441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulating Heat Transfer During Transient Dropwise Condensation on a Low-Thermal-Conductivity Substrate.
    Macner AM; Daniel S; Steen PH
    Langmuir; 2019 Sep; 35(35):11566-11578. PubMed ID: 31381348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Study of Droplet-Behavior Transition on Superhydrophobic Surfaces for Efficiency Enhancement of Condensation Heat Transfer.
    Lee JW; Ji DY; Lee KY; Hwang W
    ACS Omega; 2020 Nov; 5(43):27880-27885. PubMed ID: 33163771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recurrent filmwise and dropwise condensation on a beetle mimetic surface.
    Hou Y; Yu M; Chen X; Wang Z; Yao S
    ACS Nano; 2015 Jan; 9(1):71-81. PubMed ID: 25482594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polymer Infused Porous Surfaces for Robust, Thermally Conductive, Self-Healing Coatings for Dropwise Condensation.
    Wilke KL; Antao DS; Cruz S; Iwata R; Zhao Y; Leroy A; Preston DJ; Wang EN
    ACS Nano; 2020 Nov; 14(11):14878-14886. PubMed ID: 33185426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Condensation of Humid Air on Superhydrophobic Surfaces: Effect of Nanocoatings on a Hierarchical Interface.
    Thomas TM; Sinha Mahapatra P
    Langmuir; 2021 Nov; 37(44):12767-12780. PubMed ID: 34714651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Lipid-Inspired Highly Adhesive Interface for Durable Superhydrophobicity in Wet Environments and Stable Jumping Droplet Condensation.
    Ma J; Zheng Z; Hoque MJ; Li L; Rabbi KF; Ho JY; Braun PV; Wang P; Miljkovic N
    ACS Nano; 2022 Mar; 16(3):4251-4262. PubMed ID: 35275638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.
    Chavan S; Cha H; Orejon D; Nawaz K; Singla N; Yeung YF; Park D; Kang DH; Chang Y; Takata Y; Miljkovic N
    Langmuir; 2016 Aug; 32(31):7774-87. PubMed ID: 27409353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.
    Preston DJ; Lu Z; Song Y; Zhao Y; Wilke KL; Antao DS; Louis M; Wang EN
    Sci Rep; 2018 Jan; 8(1):540. PubMed ID: 29323200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coalescence-Induced Jumping Droplets on Nanostructured Biphilic Surfaces with Contact Electrification Effects.
    Zhu Y; Tso CY; Ho TC; Leung MKH; Yao S
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11470-11479. PubMed ID: 33630565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces.
    Zheng SF; Gross U; Wang XD
    Adv Colloid Interface Sci; 2021 Sep; 295():102503. PubMed ID: 34411880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanostructured jumping-droplet thermal rectifier.
    Wang JX; Birbarah P; Docimo D; Yang T; Alleyne AG; Miljkovic N
    Phys Rev E; 2021 Feb; 103(2-1):023110. PubMed ID: 33736084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dropwise condensation on solid hydrophilic surfaces.
    Cha H; Vahabi H; Wu A; Chavan S; Kim MK; Sett S; Bosch SA; Wang W; Kota AK; Miljkovic N
    Sci Adv; 2020 Jan; 6(2):eaax0746. PubMed ID: 31950076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Density Maximization of One-Step Electrodeposited Copper Nanocones and Dropwise Condensation Heat-Transfer Performance Evaluation.
    Wang R; Wu F; Xing D; Yu F; Gao X
    ACS Appl Mater Interfaces; 2020 May; 12(21):24512-24520. PubMed ID: 32363858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Durable, Ultrathin, and Antifouling Polymer Brush Coating for Efficient Condensation Heat Transfer.
    Li S; Lam CWE; Donati M; Regulagadda K; Yavuz E; Pfeiffer T; Sarkiris P; Gogolides E; Milionis A; Poulikakos D; Butt HJ; Kappl M
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1941-1949. PubMed ID: 38115194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchical Condensation.
    Yan X; Chen F; Sett S; Chavan S; Li H; Feng L; Li L; Zhao F; Zhao C; Huang Z; Miljkovic N
    ACS Nano; 2019 Jul; 13(7):8169-8184. PubMed ID: 31265236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrathin Lubricant-Infused Vertical Graphene Nanoscaffolds for High-Performance Dropwise Condensation.
    Tripathy A; Lam CWE; Davila D; Donati M; Milionis A; Sharma CS; Poulikakos D
    ACS Nano; 2021 Sep; 15(9):14305-14315. PubMed ID: 34399576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robust Micro-Nanostructured Superhydrophobic Surfaces for Long-Term Dropwise Condensation.
    Tang Y; Yang X; Li Y; Lu Y; Zhu D
    Nano Lett; 2021 Nov; 21(22):9824-9833. PubMed ID: 34472863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function.
    Wang H; He M; Liu H; Guan Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25586-25594. PubMed ID: 31267735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.