BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30136892)

  • 1. Cell Autoaggregation, Biofilm Formation, and Plant Attachment in a Sinorhizobium meliloti lpsB Mutant.
    Sorroche F; Bogino P; Russo DM; Zorreguieta A; Nievas F; Morales GM; Hirsch AM; Giordano W
    Mol Plant Microbe Interact; 2018 Oct; 31(10):1075-1082. PubMed ID: 30136892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina.
    Sorroche FG; Spesia MB; Zorreguieta A; Giordano W
    Appl Environ Microbiol; 2012 Jun; 78(12):4092-101. PubMed ID: 22492433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the mucR gene regulating biosynthesis of exopolysaccharides: implications for biofilm formation in Sinorhizobium meliloti Rm1021.
    Rinaudi LV; Sorroche F; Zorreguieta A; Giordano W
    FEMS Microbiol Lett; 2010 Jan; 302(1):15-21. PubMed ID: 19929968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti.
    Barnett MJ; Long SR
    J Bacteriol; 2018 Feb; 200(3):. PubMed ID: 29158240
    [No Abstract]   [Full Text] [Related]  

  • 5. Exopolysaccharide II Is Relevant for the Survival of
    Primo E; Bogino P; Cossovich S; Foresto E; Nievas F; Giordano W
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33105680
    [No Abstract]   [Full Text] [Related]  

  • 6. EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells.
    Sorroche FG; Rinaudi LV; Zorreguieta A; Giordano W
    Curr Microbiol; 2010 Nov; 61(5):465-70. PubMed ID: 20383768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility.
    Amaya-Gómez CV; Hirsch AM; Soto MJ
    BMC Microbiol; 2015 Mar; 15():58. PubMed ID: 25887945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation.
    Rinaudi LV; González JE
    J Bacteriol; 2009 Dec; 191(23):7216-24. PubMed ID: 19783627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coaggregative interactions between rhizobacteria are promoted by exopolysaccharides from Sinorhizobium meliloti.
    Nocelli N; Cossovich S; Primo E; Sorroche F; Nievas F; Giordano W; Bogino P
    J Basic Microbiol; 2023 Jun; 63(6):646-657. PubMed ID: 36737831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core.
    Campbell GR; Reuhs BL; Walker GC
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3938-43. PubMed ID: 11904442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic characterization of a Sinorhizobium meliloti chromosomal region in lipopolysaccharide biosynthesis.
    Lagares A; Hozbor DF; Niehaus K; Otero AJ; Lorenzen J; Arnold W; Pühler A
    J Bacteriol; 2001 Feb; 183(4):1248-58. PubMed ID: 11157937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti.
    Schäper S; Krol E; Skotnicka D; Kaever V; Hilker R; Søgaard-Andersen L; Becker A
    J Bacteriol; 2016 Feb; 198(3):521-35. PubMed ID: 26574513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficiency of a Sinorhizobium meliloti BacA mutant in alfalfa symbiosis correlates with alteration of the cell envelope.
    Ferguson GP; Roop RM; Walker GC
    J Bacteriol; 2002 Oct; 184(20):5625-32. PubMed ID: 12270820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The NtrY/NtrX System of Sinorhizobium meliloti GR4 Regulates Motility, EPS I Production, and Nitrogen Metabolism but Is Dispensable for Symbiotic Nitrogen Fixation.
    Calatrava-Morales N; Nogales J; Ameztoy K; van Steenbergen B; Soto MJ
    Mol Plant Microbe Interact; 2017 Jul; 30(7):566-577. PubMed ID: 28398840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The
    Chávez-Jacobo VM; Becerra-Rivera VA; Guerrero G; Dunn MF
    Microbiology (Reading); 2023 Jan; 169(1):. PubMed ID: 36748569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia.
    Nocelli N; Bogino PC; Banchio E; Giordano W
    Materials (Basel); 2016 May; 9(6):. PubMed ID: 28773540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations of Rhizobium biofilm formation.
    Fujishige NA; Kapadia NN; De Hoff PL; Hirsch AM
    FEMS Microbiol Ecol; 2006 May; 56(2):195-206. PubMed ID: 16629750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxed sugar donor selectivity of a Sinorhizobium meliloti ortholog of the Rhizobium leguminosarum mannosyl transferase LpcC. Role of the lipopolysaccharide core in symbiosis of Rhizobiaceae with plants.
    Kanipes MI; Kalb SR; Cotter RJ; Hozbor DF; Lagares A; Raetz CR
    J Biol Chem; 2003 May; 278(18):16365-71. PubMed ID: 12591936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a Novel Pyruvyltransferase Using
    Wells DH; Goularte NF; Barnett MJ; Cegelski L; Long SR
    J Bacteriol; 2021 Nov; 203(24):e0040321. PubMed ID: 34606371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyamines produced by
    Becerra-Rivera VA; Arteaga A; Leija A; Hernández G; Dunn MF
    Microbiology (Reading); 2020 Mar; 166(3):278-287. PubMed ID: 31935179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.