BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30136892)

  • 41. PCR analysis of expR gene regulating biosynthesis of exopolysaccharides in Sinorhizobium meliloti.
    Sorroche FG; Giordano W
    Biochem Mol Biol Educ; 2012; 40(2):108-11. PubMed ID: 22419591
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Sinorhizobium meliloti lipopolysaccharide mutant altered in cell surface sulfation.
    Keating DH; Willits MG; Long SR
    J Bacteriol; 2002 Dec; 184(23):6681-9. PubMed ID: 12426356
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Identification of Sinorhizobium meliloti genes influencing synthesis of surface polysaccharides and competitiveness].
    Onishchuk OP; Sharypova LA; Kurchak ON; Becker A; Simarov BV
    Genetika; 2005 Dec; 41(12):1617-23. PubMed ID: 16396447
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants.
    Scheidle H; Gross A; Niehaus K
    New Phytol; 2005 Feb; 165(2):559-65. PubMed ID: 15720666
    [TBL] [Abstract][Full Text] [Related]  

  • 45. How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model.
    Jones KM; Kobayashi H; Davies BW; Taga ME; Walker GC
    Nat Rev Microbiol; 2007 Aug; 5(8):619-33. PubMed ID: 17632573
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The symbiotic defect in a Sinorhizobium meliloti lipopolysaccharide mutant can be overcome by expression of other surface polysaccharides.
    Hozbor DF; Pich Otero AJ; Lodeiro AR; Del Papa MF; Pistorio M; Lagares A
    Res Microbiol; 2004 Dec; 155(10):855-60. PubMed ID: 15567281
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The outer membrane protein TolC from Sinorhizobium meliloti affects protein secretion, polysaccharide biosynthesis, antimicrobial resistance, and symbiosis.
    Cosme AM; Becker A; Santos MR; Sharypova LA; Santos PM; Moreira LM
    Mol Plant Microbe Interact; 2008 Jul; 21(7):947-57. PubMed ID: 18533835
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitrogen metabolism in Sinorhizobium meliloti-alfalfa symbiosis: dissecting the role of GlnD and PII proteins.
    Yurgel SN; Rice J; Kahn ML
    Mol Plant Microbe Interact; 2012 Mar; 25(3):355-62. PubMed ID: 22074345
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sinorhizobium meliloti-induced chitinase gene expression in Medicago truncatula ecotype R108-1: a comparison between symbiosis-specific class V and defence-related class IV chitinases.
    Salzer P; Feddermann N; Wiemken A; Boller T; Staehelin C
    Planta; 2004 Aug; 219(4):626-38. PubMed ID: 15107993
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optogenetics in
    Pirhanov A; Bridges CM; Goodwin RA; Guo YS; Furrer J; Shor LM; Gage DJ; Cho YK
    ACS Synth Biol; 2021 Feb; 10(2):345-356. PubMed ID: 33465305
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv Osumi, is regulated by Quorum Sensing systems and inducing flavonoids via NodD1.
    Pérez-Montaño F; Jiménez-Guerrero I; Del Cerro P; Baena-Ropero I; López-Baena FJ; Ollero FJ; Bellogín R; Lloret J; Espuny R
    PLoS One; 2014; 9(8):e105901. PubMed ID: 25166872
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mesorhizobium loti produces nodPQ-dependent sulfated cell surface polysaccharides.
    Townsend GE; Forsberg LS; Keating DH
    J Bacteriol; 2006 Dec; 188(24):8560-72. PubMed ID: 17028279
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The bacA gene homolog, mlr7400, in Mesorhizobium loti MAFF303099 is dispensable for symbiosis with Lotus japonicus but partially capable of supporting the symbiotic function of bacA in Sinorhizobium meliloti.
    Maruya J; Saeki K
    Plant Cell Physiol; 2010 Sep; 51(9):1443-52. PubMed ID: 20668224
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 2-Tridecanone impacts surface-associated bacterial behaviours and hinders plant-bacteria interactions.
    López-Lara IM; Nogales J; Pech-Canul Á; Calatrava-Morales N; Bernabéu-Roda LM; Durán P; Cuéllar V; Olivares J; Alvarez L; Palenzuela-Bretones D; Romero M; Heeb S; Cámara M; Geiger O; Soto MJ
    Environ Microbiol; 2018 Jun; 20(6):2049-2065. PubMed ID: 29488306
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Sinorhizobium fredii HH103 lipopolysaccharide is not only relevant at early soybean nodulation stages but also for symbiosome stability in mature nodules.
    Margaret I; Lucas MM; Acosta-Jurado S; Buendía-Clavería AM; Fedorova E; Hidalgo Á; Rodríguez-Carvajal MA; Rodriguez-Navarro DN; Ruiz-Sainz JE; Vinardell JM
    PLoS One; 2013; 8(10):e74717. PubMed ID: 24098345
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sinorhizobium meliloti sulfotransferase that modifies lipopolysaccharide.
    Cronan GE; Keating DH
    J Bacteriol; 2004 Jul; 186(13):4168-76. PubMed ID: 15205418
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis.
    Mitra RM; Long SR
    Plant Physiol; 2004 Feb; 134(2):595-604. PubMed ID: 14739349
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Production of succinoglycan polymer in Sinorhizobium meliloti is affected by SMb21506 and requires the N-terminal domain of ExoP.
    Jofré E; Becker A
    Mol Plant Microbe Interact; 2009 Dec; 22(12):1656-68. PubMed ID: 19888830
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of Sinorhizobium meliloti early symbiotic genes by use of a positive functional screen.
    Zhang XS; Cheng HP
    Appl Environ Microbiol; 2006 Apr; 72(4):2738-48. PubMed ID: 16597978
    [TBL] [Abstract][Full Text] [Related]  

  • 60. GuaB activity is required in Rhizobium tropici during the early stages of nodulation of determinate nodules but is dispensable for the Sinorhizobium meliloti-alfalfa symbiotic interaction.
    Collavino M; Riccillo PM; Grasso DH; Crespi M; Aguilar M
    Mol Plant Microbe Interact; 2005 Jul; 18(7):742-50. PubMed ID: 16042020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.