These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 3013716)
1. Differential effects of antidepressant drugs on [3H]dihydroalprenolol and [3H]imipramine ligand recognition sites in olfactory bulbectomized and sham-lesioned rats. Jesberger JA; Richardson JS Gen Pharmacol; 1986; 17(3):293-307. PubMed ID: 3013716 [TBL] [Abstract][Full Text] [Related]
2. Bupropion: a new antidepressant drug, the mechanism of action of which is not associated with down-regulation of postsynaptic beta-adrenergic, serotonergic (5-HT2), alpha 2-adrenergic, imipramine and dopaminergic receptors in brain. Ferris RM; Beaman OJ Neuropharmacology; 1983 Nov; 22(11):1257-67. PubMed ID: 6320035 [TBL] [Abstract][Full Text] [Related]
3. Regulation of high- and low-affinity [3H]imipramine recognition sites in rat brain by chronic treatment with antidepressants. Hrdina PD Eur J Pharmacol; 1987 Jun; 138(2):159-68. PubMed ID: 3040430 [TBL] [Abstract][Full Text] [Related]
4. Effect of olfactory bulbectomy and chronic amitryptiline treatment in rats. 3H-imipramine binding and behavioral analysis by swimming and open field tests. Stockert M; Serra J; De Robertis E Pharmacol Biochem Behav; 1988 Apr; 29(4):681-6. PubMed ID: 2842807 [TBL] [Abstract][Full Text] [Related]
5. Comparison of iprindole, imipramine and mianserin action on brain serotonergic and beta adrenergic receptors. Gandolfi O; Barbaccia ML; Costa E J Pharmacol Exp Ther; 1984 Jun; 229(3):782-6. PubMed ID: 6327970 [TBL] [Abstract][Full Text] [Related]
6. Antidepressant drugs with varying pharmacological profiles alter rat pineal beta adrenergic-mediated function. Friedman E; Yocca FD; Cooper TB J Pharmacol Exp Ther; 1984 Mar; 228(3):545-50. PubMed ID: 6323672 [TBL] [Abstract][Full Text] [Related]
7. Regionally specific neural adaptation of beta adrenergic and 5-hydroxytryptamine2 receptors after antidepressant administration in the forced swim test and after chronic antidepressant drug treatment. Paul IA; Duncan GE; Powell KR; Mueller RA; Hong JS; Breese GR J Pharmacol Exp Ther; 1988 Sep; 246(3):956-62. PubMed ID: 2843636 [TBL] [Abstract][Full Text] [Related]
8. Rapid down regulation of beta adrenergic receptors by combining antidepressant drugs with forced swim: a model of antidepressant-induced neural adaptation. Duncan GE; Paul IA; Harden TK; Mueller RA; Stumpf WE; Breese GR J Pharmacol Exp Ther; 1985 Aug; 234(2):402-8. PubMed ID: 2991500 [TBL] [Abstract][Full Text] [Related]
9. Effects of bulbectomy and subsequent antidepressant treatment on brain 5-HT2 and 5-HT1A receptors in mice. Gurevich EV; Aleksandrova IA; Otmakhova NA; Katkov YA; Nesterova IV; Bobkova NV Pharmacol Biochem Behav; 1993 May; 45(1):65-70. PubMed ID: 8516375 [TBL] [Abstract][Full Text] [Related]
10. Some effects of chronic antidepressant treatments on rat brain monoaminergic systems. Sugrue MF J Neural Transm; 1983; 57(4):281-95. PubMed ID: 6197507 [TBL] [Abstract][Full Text] [Related]
11. Down regulation of dihydroalprenolol and imipramine binding sites in brain of rats repeatedly treated with imipramine. Kinnier WJ; Chuang DM; Costa E Eur J Pharmacol; 1980 Oct; 67(2-3):289-94. PubMed ID: 6257531 [TBL] [Abstract][Full Text] [Related]
12. Neuroanatomically selective down-regulation of beta adrenergic receptors by chronic imipramine treatment: relationships to the topography of [3H]imipramine and [3H] desipramine binding sites. Duncan GE; Paul IA; Powell KR; Fassberg JB; Stumpf WE; Breese GR J Pharmacol Exp Ther; 1989 Jan; 248(1):470-7. PubMed ID: 2536433 [TBL] [Abstract][Full Text] [Related]
13. Delayed emergence of antidepressant efficacy following withdrawal in olfactory bulbectomized rats. Noreika L; Pastor G; Liebman J Pharmacol Biochem Behav; 1981 Sep; 15(3):393-8. PubMed ID: 7291242 [TBL] [Abstract][Full Text] [Related]
14. Dose-dependent down-regulation of beta-adrenergic receptors after chronic intravenous infusion of antidepressants. Sethy VH; Day JS; Cooper MM Prog Neuropsychopharmacol Biol Psychiatry; 1988; 12(5):673-82. PubMed ID: 2851860 [TBL] [Abstract][Full Text] [Related]
15. Effects of antidepressant drugs on the behavior of olfactory bulbectomized and sham-operated rats. Jesberger JA; Richardson JS Behav Neurosci; 1986 Apr; 100(2):256-74. PubMed ID: 3964427 [TBL] [Abstract][Full Text] [Related]
16. Rapid decrease in rat brain beta adrenergic receptor binding during combined antidepressant alpha-2 antagonist treatment. Scott JA; Crews FT J Pharmacol Exp Ther; 1983 Mar; 224(3):640-6. PubMed ID: 6131122 [TBL] [Abstract][Full Text] [Related]
17. Effects of acute and subacute antidepressant treatment on kindled seizures in rats. Knobloch LC; Goldstein JM; Malick JB Pharmacol Biochem Behav; 1982 Sep; 17(3):461-5. PubMed ID: 7146047 [TBL] [Abstract][Full Text] [Related]
18. Effect of repeated administration of antidepressant drugs on the serum and brain concentration of testosterone and its metabolites. PrzegaliĊski E; WarchoĊ-Kania A; Budziszewska B; Jaworska L Pol J Pharmacol Pharm; 1987; 39(6):683-9. PubMed ID: 3503989 [TBL] [Abstract][Full Text] [Related]
19. Antidepressant-induced modulation of GABAA receptors and beta-adrenoceptors but not GABAB receptors in the frontal cortex of olfactory bulbectomised rats. Dennis T; Beauchemin V; Lavoie N Eur J Pharmacol; 1994 Sep; 262(1-2):143-8. PubMed ID: 7813565 [TBL] [Abstract][Full Text] [Related]
20. Species dependence of adaptations at the pre- and postsynaptic serotonergic receptors following long-term antidepressant drug treatment. Schoups AA; De Potter WP Biochem Pharmacol; 1988 Dec; 37(23):4451-60. PubMed ID: 2849445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]