These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30137633)

  • 21. RAG: RNA-As-Graphs web resource.
    Fera D; Kim N; Shiffeldrim N; Zorn J; Laserson U; Gan HH; Schlick T
    BMC Bioinformatics; 2004 Jul; 5():88. PubMed ID: 15238163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Multiscale Ernwin/SPQR RNA Structure Prediction Pipeline.
    Thiel BC; Poblete S; Hofacker IL
    Methods Mol Biol; 2024; 2726():377-399. PubMed ID: 38780739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 2D-RNA-coupling numbers: a new computational chemistry approach to link secondary structure topology with biological function.
    González-Díaz H; Agüero-Chapin G; Varona J; Molina R; Delogu G; Santana L; Uriarte E; Podda G
    J Comput Chem; 2007 Apr; 28(6):1049-56. PubMed ID: 17279496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Method to Predict the 3D Structure of an RNA Scaffold.
    Xu X; Chen SJ
    Methods Mol Biol; 2015; 1316():1-11. PubMed ID: 25967048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.
    Sarver M; Zirbel CL; Stombaugh J; Mokdad A; Leontis NB
    J Math Biol; 2008 Jan; 56(1-2):215-52. PubMed ID: 17694311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. iFoldRNA v2: folding RNA with constraints.
    Krokhotin A; Houlihan K; Dokholyan NV
    Bioinformatics; 2015 Sep; 31(17):2891-3. PubMed ID: 25910700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual Graph Partitioning Highlights a Small Group of Pseudoknot-Containing RNA Submotifs.
    Jain S; Bayrak CS; Petingi L; Schlick T
    Genes (Basel); 2018 Jul; 9(8):. PubMed ID: 30044451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coarse-grained prediction of RNA loop structures.
    Liu L; Chen SJ
    PLoS One; 2012; 7(11):e48460. PubMed ID: 23144887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pure multiple RNA secondary structure alignments: a progressive profile approach.
    Höchsmann M; Voss B; Giegerich R
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(1):53-62. PubMed ID: 17048408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. incaRNAfbinv: a web server for the fragment-based design of RNA sequences.
    Drory Retwitzer M; Reinharz V; Ponty Y; Waldispühl J; Barash D
    Nucleic Acids Res; 2016 Jul; 44(W1):W308-14. PubMed ID: 27185893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vfold-Pipeline: a web server for RNA 3D structure prediction from sequences.
    Li J; Zhang S; Zhang D; Chen SJ
    Bioinformatics; 2022 Aug; 38(16):4042-4043. PubMed ID: 35758624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction and visualization of structural switches in RNA.
    Giegerich R; Haase D; Rehmsmeier M
    Pac Symp Biocomput; 1999; ():126-37. PubMed ID: 10380191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational design of RNA libraries for in vitro selection of aptamers.
    Chushak YG; Martin JA; Chávez JL; Kelley-Loughnane N; Stone MO
    Methods Mol Biol; 2014; 1111():1-15. PubMed ID: 24549608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In silico selection of RNA aptamers.
    Chushak Y; Stone MO
    Nucleic Acids Res; 2009 Jul; 37(12):e87. PubMed ID: 19465396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling and Predicting RNA Three-Dimensional Structures.
    Reinharz V; Sarrazin-Gendron R; Waldispühl J
    Methods Mol Biol; 2021; 2284():17-42. PubMed ID: 33835435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RiboDiffusion: tertiary structure-based RNA inverse folding with generative diffusion models.
    Huang H; Lin Z; He D; Hong L; Li Y
    Bioinformatics; 2024 Jun; 40(Supplement_1):i347-i356. PubMed ID: 38940178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PTGL: a database for secondary structure-based protein topologies.
    May P; Kreuchwig A; Steinke T; Koch I
    Nucleic Acids Res; 2010 Jan; 38(Database issue):D326-30. PubMed ID: 19906706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA-Puzzles Round II: assessment of RNA structure prediction programs applied to three large RNA structures.
    Miao Z; Adamiak RW; Blanchet MF; Boniecki M; Bujnicki JM; Chen SJ; Cheng C; Chojnowski G; Chou FC; Cordero P; Cruz JA; Ferré-D'Amaré AR; Das R; Ding F; Dokholyan NV; Dunin-Horkawicz S; Kladwang W; Krokhotin A; Lach G; Magnus M; Major F; Mann TH; Masquida B; Matelska D; Meyer M; Peselis A; Popenda M; Purzycka KJ; Serganov A; Stasiewicz J; Szachniuk M; Tandon A; Tian S; Wang J; Xiao Y; Xu X; Zhang J; Zhao P; Zok T; Westhof E
    RNA; 2015 Jun; 21(6):1066-84. PubMed ID: 25883046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GARN2: coarse-grained prediction of 3D structure of large RNA molecules by regret minimization.
    Boudard M; Barth D; Bernauer J; Denise A; Cohen J
    Bioinformatics; 2017 Aug; 33(16):2479-2486. PubMed ID: 28398456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational modeling of RNA 3D structures, with the aid of experimental restraints.
    Magnus M; Matelska D; Lach G; Chojnowski G; Boniecki MJ; Purta E; Dawson W; Dunin-Horkawicz S; Bujnicki JM
    RNA Biol; 2014; 11(5):522-36. PubMed ID: 24785264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.