These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 30137720)
1. Time-varying and state-dependent recovery rates in epidemiological models. Greenhalgh S; Day T Infect Dis Model; 2017 Nov; 2(4):419-430. PubMed ID: 30137720 [TBL] [Abstract][Full Text] [Related]
2. A generalized differential equation compartmental model of infectious disease transmission. Greenhalgh S; Rozins C Infect Dis Model; 2021; 6():1073-1091. PubMed ID: 34585030 [TBL] [Abstract][Full Text] [Related]
3. A Fractional Order Recovery SIR Model from a Stochastic Process. Angstmann CN; Henry BI; McGann AV Bull Math Biol; 2016 Mar; 78(3):468-99. PubMed ID: 26940822 [TBL] [Abstract][Full Text] [Related]
4. Effect of sojourn time distributions on the early dynamics of COVID-19 outbreak. Tunc H; Sari M; Kotil SE Nonlinear Dyn; 2023; 111(12):11685-11702. PubMed ID: 37168840 [TBL] [Abstract][Full Text] [Related]
5. Epidemic models with differential susceptibility and staged progression and their dynamics. Hyman JM; Li J Math Biosci Eng; 2009 Apr; 6(2):321-32. PubMed ID: 19364155 [TBL] [Abstract][Full Text] [Related]
7. Characterization of stationary states in random walks with stochastic resetting. Méndez V; Campos D Phys Rev E; 2016 Feb; 93(2):022106. PubMed ID: 26986287 [TBL] [Abstract][Full Text] [Related]
8. Impact of the infection period distribution on the epidemic spread in a metapopulation model. Vergu E; Busson H; Ezanno P PLoS One; 2010 Feb; 5(2):e9371. PubMed ID: 20195473 [TBL] [Abstract][Full Text] [Related]
9. Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Lloyd AL Theor Popul Biol; 2001 Aug; 60(1):59-71. PubMed ID: 11589638 [TBL] [Abstract][Full Text] [Related]
10. Relatedness of the incidence decay with exponential adjustment (IDEA) model, "Farr's law" and SIR compartmental difference equation models. Santillana M; Tuite A; Nasserie T; Fine P; Champredon D; Chindelevitch L; Dushoff J; Fisman D Infect Dis Model; 2018; 3():1-12. PubMed ID: 30839910 [TBL] [Abstract][Full Text] [Related]
11. Estimation of a time-varying force of infection and basic reproduction number with application to an outbreak of classical swine fever. Howard SC; Donnelly CA J Epidemiol Biostat; 2000; 5(3):161-8. PubMed ID: 11051112 [TBL] [Abstract][Full Text] [Related]
12. Generalizations of the 'Linear Chain Trick': incorporating more flexible dwell time distributions into mean field ODE models. Hurtado PJ; Kirosingh AS J Math Biol; 2019 Oct; 79(5):1831-1883. PubMed ID: 31410551 [TBL] [Abstract][Full Text] [Related]
13. Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition. Vlad MO; Ross J Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061908. PubMed ID: 12513319 [TBL] [Abstract][Full Text] [Related]
14. Semi-empirical power-law scaling of new infection rate to model epidemic dynamics with inhomogeneous mixing. Stroud PD; Sydoriak SJ; Riese JM; Smith JP; Mniszewski SM; Romero PR Math Biosci; 2006 Oct; 203(2):301-18. PubMed ID: 16540129 [TBL] [Abstract][Full Text] [Related]
15. Pairwise approximation for Röst G; Vizi Z; Kiss IZ Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170695. PubMed ID: 29507514 [TBL] [Abstract][Full Text] [Related]
16. Epidemics with general generation interval distributions. Miller JC; Davoudi B; Meza R; Slim AC; Pourbohloul B J Theor Biol; 2010 Jan; 262(1):107-15. PubMed ID: 19679141 [TBL] [Abstract][Full Text] [Related]
17. A derivation of Maxwell's equations using the Heaviside notation. Hampshire DP Philos Trans A Math Phys Eng Sci; 2018 Oct; 376(2134):. PubMed ID: 30373937 [TBL] [Abstract][Full Text] [Related]
18. On the uniqueness of the positive solution of an integral equation which appears in epidemiological models. Lopez LF; Coutinho FA J Math Biol; 2000 Mar; 40(3):199-228. PubMed ID: 10794435 [TBL] [Abstract][Full Text] [Related]
19. Continuum description of a contact infection spread in a SIR model. Postnikov EB; Sokolov IM Math Biosci; 2007 Jul; 208(1):205-15. PubMed ID: 17174353 [TBL] [Abstract][Full Text] [Related]
20. Front dynamics in fractional-order epidemic models. Hanert E; Schumacher E; Deleersnijder E J Theor Biol; 2011 Jun; 279(1):9-16. PubMed ID: 21420979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]