These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 30137735)
1. A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem. Li L; Lu Z; Zhang W; Huang F; Yang Y J Inequal Appl; 2018; 2018(1):138. PubMed ID: 30137735 [TBL] [Abstract][Full Text] [Related]
2. A Posteriori Error Estimates for Fully Discrete Finite Element Method for Generalized Diffusion Equation with Delay. Wang W; Yi L; Xiao A J Sci Comput; 2020; 84(1):13. PubMed ID: 32834471 [TBL] [Abstract][Full Text] [Related]
3. Superconvergence of semidiscrete finite element methods for bilinear parabolic optimal control problems. Tang Y; Hua Y J Inequal Appl; 2017; 2017(1):62. PubMed ID: 28367051 [TBL] [Abstract][Full Text] [Related]
4. Error Analysis of a PFEM Based on the Euler Semi-Implicit Scheme for the Unsteady MHD Equations. Shi K; Su H; Feng X Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420415 [TBL] [Abstract][Full Text] [Related]
5. Error estimates of finite element methods for fractional stochastic Navier-Stokes equations. Li X; Yang X J Inequal Appl; 2018; 2018(1):284. PubMed ID: 30839715 [TBL] [Abstract][Full Text] [Related]
6. Error Bounds for Discontinuous Finite Volume Discretisations of Brinkman Optimal Control Problems. Kumar S; Ruiz-Baier R; Sandilya R J Sci Comput; 2019; 78(1):64-93. PubMed ID: 30872895 [TBL] [Abstract][Full Text] [Related]
7. Some approximation results for mild solutions of stochastic fractional order evolution equations driven by Gaussian noise. Fahim K; Hausenblas E; Kovács M Stoch Partial Differ Equ; 2023; 11(3):1044-1088. PubMed ID: 37551409 [TBL] [Abstract][Full Text] [Related]
8. Analysis of a bone remodeling model with myeloma disease arising in cellular dynamics. Baldonedo J; Fernández JR; Segade A Int J Numer Method Biomed Eng; 2020 Jun; 36(6):e3333. PubMed ID: 32167648 [TBL] [Abstract][Full Text] [Related]
9. Hazardous Continuation Backward in Time in Nonlinear Parabolic Equations, and an Experiment in Deblurring Nonlinearly Blurred Imagery. Carasso AS J Res Natl Inst Stand Technol; 2013; 118():199-217. PubMed ID: 26401430 [TBL] [Abstract][Full Text] [Related]
10. The Optimal Error Estimate of the Fully Discrete Locally Stabilized Finite Volume Method for the Non-Stationary Navier-Stokes Problem. He G; Zhang Y Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741489 [TBL] [Abstract][Full Text] [Related]
11. Multiscale techniques for parabolic equations. Målqvist A; Persson A Numer Math (Heidelb); 2018; 138(1):191-217. PubMed ID: 29375160 [TBL] [Abstract][Full Text] [Related]
12. Convergence analysis of domain decomposition based time integrators for degenerate parabolic equations. Eisenmann M; Hansen E Numer Math (Heidelb); 2018; 140(4):913-938. PubMed ID: 30416211 [TBL] [Abstract][Full Text] [Related]
13. Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space. Bause M; Radu FA; Köcher U Numer Math (Heidelb); 2017; 137(4):773-818. PubMed ID: 29151621 [TBL] [Abstract][Full Text] [Related]
14. Computational method for singularly perturbed parabolic differential equations with discontinuous coefficients and large delay. Daba IT; Duressa GF Heliyon; 2022 Sep; 8(9):e10742. PubMed ID: 36193532 [TBL] [Abstract][Full Text] [Related]
15. Laplace transform homotopy perturbation method for the approximation of variational problems. Filobello-Nino U; Vazquez-Leal H; Rashidi MM; Sedighi HM; Perez-Sesma A; Sandoval-Hernandez M; Sarmiento-Reyes A; Contreras-Hernandez AD; Pereyra-Diaz D; Hoyos-Reyes C; Jimenez-Fernandez VM; Huerta-Chua J; Castro-Gonzalez F; Laguna-Camacho JR Springerplus; 2016; 5():276. PubMed ID: 27006884 [TBL] [Abstract][Full Text] [Related]
16. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation. Dagrau F; Rénier M; Marchiano R; Coulouvrat F J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874 [TBL] [Abstract][Full Text] [Related]
17. A POSTERIORI ERROR ANALYSIS OF TWO STAGE COMPUTATION METHODS WITH APPLICATION TO EFFICIENT DISCRETIZATION AND THE PARAREAL ALGORITHM. Chaudhry JH; Estep D; Tavener S; Carey V; Sandelin J SIAM J Numer Anal; 2016; 54(5):2974-3002. PubMed ID: 29081546 [TBL] [Abstract][Full Text] [Related]
18. Optimal Control for Partially Observed Nonlinear Interval Systems. Dabbous TE J Dyn Syst Meas Control; 2019 Sep; 141(9):0910041-910049. PubMed ID: 33437095 [TBL] [Abstract][Full Text] [Related]
19. Multivariable Linear Algebraic Discretization of Nonlinear Parabolic Equations for Computational Analysis. Zuo L; Mei F Comput Intell Neurosci; 2022; 2022():6323418. PubMed ID: 36211017 [TBL] [Abstract][Full Text] [Related]