These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 30137898)
1. Nonlinear impulsive differential and integral inequalities with nonlocal jump conditions. Zheng Z; Zhang Y; Shao J J Inequal Appl; 2018; 2018(1):170. PubMed ID: 30137898 [TBL] [Abstract][Full Text] [Related]
2. Generalizations of some fractional integral inequalities via generalized Mittag-Leffler function. Abbas G; Khan KA; Farid G; Rehman AU J Inequal Appl; 2017; 2017(1):121. PubMed ID: 28603400 [TBL] [Abstract][Full Text] [Related]
3. Exploring the dynamics of nonlocal coupled systems of fractional Ali KK; Raslan KR; Abd-Elall Ibrahim A; Mohamed MS Heliyon; 2024 Jul; 10(13):e33399. PubMed ID: 39040329 [TBL] [Abstract][Full Text] [Related]
4. Integral inequalities for some convex functions via generalized fractional integrals. Mehreen N; Anwar M J Inequal Appl; 2018; 2018(1):208. PubMed ID: 30839565 [TBL] [Abstract][Full Text] [Related]
5. Explicit bounds of unknown function of some new weakly singular retarded integral inequalities for discontinuous functions and their applications. Li Z; Wang WS J Inequal Appl; 2017; 2017(1):287. PubMed ID: 29200796 [TBL] [Abstract][Full Text] [Related]
6. Existence results of fractional differential equations with nonlocal double-integral boundary conditions. Yan D Math Biosci Eng; 2023 Jan; 20(3):4437-4454. PubMed ID: 36896507 [TBL] [Abstract][Full Text] [Related]
7. A new fractional orthogonal basis and its application in nonlinear delay fractional optimal control problems. Marzban HR ISA Trans; 2021 Aug; 114():106-119. PubMed ID: 33386165 [TBL] [Abstract][Full Text] [Related]
8. Some new Nwaeze ER; Kermausuor S; Tameru AM J Inequal Appl; 2018; 2018(1):139. PubMed ID: 30137726 [TBL] [Abstract][Full Text] [Related]
9. A procedure to construct exact solutions of nonlinear fractional differential equations. Güner Ö; Cevikel AC ScientificWorldJournal; 2014; 2014():489495. PubMed ID: 24737972 [TBL] [Abstract][Full Text] [Related]
10. Fractional calculus with exponential memory. Fu H; Wu GC; Yang G; Huang LL Chaos; 2021 Mar; 31(3):031103. PubMed ID: 33810742 [TBL] [Abstract][Full Text] [Related]
11. Hermite-Hadamard type inequalities for the generalized k-fractional integral operators. Set E; Choi J; Gözpinar A J Inequal Appl; 2017; 2017(1):206. PubMed ID: 28943736 [TBL] [Abstract][Full Text] [Related]
12. On new inequalities of Hermite-Hadamard-Fejer type for harmonically convex functions via fractional integrals. Kunt M; İşcan İ; Yazıcı N; Gözütok U Springerplus; 2016; 5():635. PubMed ID: 27330901 [TBL] [Abstract][Full Text] [Related]
13. Certain Hermite-Hadamard type inequalities via generalized Agarwal P; Jleli M; Tomar M J Inequal Appl; 2017; 2017(1):55. PubMed ID: 28316453 [TBL] [Abstract][Full Text] [Related]
14. Equivalent system for a multiple-rational-order fractional differential system. Li C; Zhang F; Kurths J; Zeng F Philos Trans A Math Phys Eng Sci; 2013 May; 371(1990):20120156. PubMed ID: 23547233 [TBL] [Abstract][Full Text] [Related]
15. Generalized Hermite-Hadamard type inequalities involving fractional integral operators. Set E; Noor MA; Awan MU; Gözpinar A J Inequal Appl; 2017; 2017(1):169. PubMed ID: 28781495 [TBL] [Abstract][Full Text] [Related]
16. Stability of Delay Hopfield Neural Networks with Generalized Riemann-Liouville Type Fractional Derivative. Agarwal RP; Hristova S Entropy (Basel); 2023 Jul; 25(8):. PubMed ID: 37628175 [TBL] [Abstract][Full Text] [Related]
17. Generalized nonlinear weakly singular retarded integral inequalities with maxima and their applications. Yan Y; Zhou D; Zhao J J Inequal Appl; 2018; 2018(1):294. PubMed ID: 30839781 [TBL] [Abstract][Full Text] [Related]
18. Solitary wave solutions to some nonlinear fractional evolution equations in mathematical physics. Ali HMS; Habib MA; Miah MM; Akbar MA Heliyon; 2020 Apr; 6(4):e03727. PubMed ID: 32322721 [TBL] [Abstract][Full Text] [Related]
19. Determination of coefficients of high-order schemes for Riemann-Liouville derivative. Wu R; Ding H; Li C ScientificWorldJournal; 2014; 2014():402373. PubMed ID: 24883394 [TBL] [Abstract][Full Text] [Related]
20. Study of Results of Katugampola Fractional Derivative and Chebyshev Inequailities. Nazeer N; Asjad MI; Azam MK; Akgül A Int J Appl Comput Math; 2022; 8(5):225. PubMed ID: 35996463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]