These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30137907)

  • 1. Simple form of a projection set in hybrid iterative schemes for non-linear mappings, application of inequalities and computational experiments.
    Wei L; Agarwal RP
    J Inequal Appl; 2018; 2018(1):179. PubMed ID: 30137907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New construction and proof techniques of projection algorithm for countable maximal monotone mappings and weakly relatively non-expansive mappings in a Banach space.
    Wei L; Agarwal RP
    J Inequal Appl; 2018; 2018(1):64. PubMed ID: 29606841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergence theorems for split feasibility problems on a finite sum of monotone operators and a family of nonexpansive mappings.
    Petrot N; Suwannaprapa M; Dadashi V
    J Inequal Appl; 2018; 2018(1):205. PubMed ID: 30839581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong convergence of gradient projection method for generalized equilibrium problem in a Banach space.
    Farid M; Irfan SS; Khan MF; Khan SA
    J Inequal Appl; 2017; 2017(1):297. PubMed ID: 29213202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multidirectional hybrid algorithm for the split common fixed point problem and application to the split common null point problem.
    Li X; Guo M; Su Y
    Springerplus; 2016; 5(1):2009. PubMed ID: 27933265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong convergence theorems by hybrid and shrinking projection methods for sums of two monotone operators.
    Yuying T; Plubtieng S
    J Inequal Appl; 2017; 2017(1):72. PubMed ID: 28458482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong convergence theorems for a class of split feasibility problems and fixed point problem in Hilbert spaces.
    Zhu J; Tang J; Chang SS
    J Inequal Appl; 2018; 2018(1):289. PubMed ID: 30839719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified forward-backward splitting midpoint method with superposition perturbations for the sum of two kinds of infinite accretive mappings and its applications.
    Wei L; Duan L; Agarwal RP; Chen R; Zheng Y
    J Inequal Appl; 2017; 2017(1):227. PubMed ID: 28989255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fixed point iteration for a countable family of multi-valued strictly pseudo-contractive-type mappings.
    Chidume CE; Okpala ME
    Springerplus; 2015; 4():506. PubMed ID: 26405626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscosity iterative algorithm for the zero point of monotone mappings in Banach spaces.
    Tang Y
    J Inequal Appl; 2018; 2018(1):254. PubMed ID: 30839705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hybrid block iterative algorithm for solving the system of equilibrium problems and variational inequality problems.
    Saewan S; Kumam P
    Springerplus; 2012 Dec; 1(1):8. PubMed ID: 23687626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The generalized viscosity explicit rules for a family of strictly pseudo-contractive mappings in a
    Khuangsatung W; Sunthrayuth P
    J Inequal Appl; 2018; 2018(1):167. PubMed ID: 30137895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inducing strong convergence into the asymptotic behaviour of proximal splitting algorithms in Hilbert spaces.
    Boţ RI; Csetnek ER; Meier D
    Optim Methods Softw; 2019; 34(3):489-514. PubMed ID: 31057305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong convergence theorems for a common fixed point of a finite family of Bregman weak relativity nonexpansive mappings in reflexive Banach spaces.
    Zegeye H; Shahzad N
    ScientificWorldJournal; 2014; 2014():493450. PubMed ID: 24757423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-adaptive iterative method for solving boundedly Lipschitz continuous and strongly monotone variational inequalities.
    He S; Liu L; Gibali A
    J Inequal Appl; 2018; 2018(1):350. PubMed ID: 30839892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modified subgradient extragradient method for solving monotone variational inequalities.
    He S; Wu T
    J Inequal Appl; 2017; 2017(1):89. PubMed ID: 28515617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructive techniques for zeros of monotone mappings in certain Banach spaces.
    Diop C; Sow TM; Djitte N; Chidume CE
    Springerplus; 2015; 4():383. PubMed ID: 26240781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The viscosity iterative algorithms for the implicit midpoint rule of nonexpansive mappings in uniformly smooth Banach spaces.
    Luo P; Cai G; Shehu Y
    J Inequal Appl; 2017; 2017(1):154. PubMed ID: 28680256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple computational algorithm with inertial extrapolation for generalized split common fixed point problems.
    Gebrie AG; Bedane DS
    Heliyon; 2021 Nov; 7(11):e08373. PubMed ID: 34816051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convergence theorems for generalized nonexpansive multivalued mappings in hyperbolic spaces.
    Kim JK; Pathak RP; Dashputre S; Diwan SD; Gupta R
    Springerplus; 2016; 5(1):912. PubMed ID: 27386356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.