BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

633 related articles for article (PubMed ID: 30137959)

  • 1. Ligand Template Strategies for Catalyst Encapsulation.
    Jongkind LJ; Caumes X; Hartendorp APT; Reek JNH
    Acc Chem Res; 2018 Sep; 51(9):2115-2128. PubMed ID: 30137959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encapsulation of transition metal catalysts by ligand-template directed assembly.
    Slagt VF; Kamer PC; van Leeuwen PW; Reek JN
    J Am Chem Soc; 2004 Feb; 126(5):1526-36. PubMed ID: 14759211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-template directed assembly: an efficient approach for the supramolecular encapsulation of transition-metal catalysts.
    Kleij AW; Reek JN
    Chemistry; 2006 May; 12(16):4218-27. PubMed ID: 16493698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Hydroformylation Using a Rhodium Catalyst Encapsulated in a Chiral Capsule.
    Jongkind LJ; Reek JNH
    Chem Asian J; 2020 Mar; 15(6):867-875. PubMed ID: 32020766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination Cages Based on Bis(pyrazolylpyridine) Ligands: Structures, Dynamic Behavior, Guest Binding, and Catalysis.
    Ward MD; Hunter CA; Williams NH
    Acc Chem Res; 2018 Sep; 51(9):2073-2082. PubMed ID: 30085644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-Selective Hydroformylation by a Rhodium Catalyst Confined in a Supramolecular Cage.
    Nurttila SS; Brenner W; Mosquera J; van Vliet KM; Nitschke JR; Reek JNH
    Chemistry; 2019 Jan; 25(2):609-620. PubMed ID: 30351486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of Encapsulated Transition Metal Catalysts.
    Slagt VF; Reek JNH; Kamer PCJ; van Leeuwen PWNM
    Angew Chem Int Ed Engl; 2001 Nov; 40(22):4271-4274. PubMed ID: 29712091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Capsules via Subcomponent Self-Assembly.
    Zhang D; Ronson TK; Nitschke JR
    Acc Chem Res; 2018 Oct; 51(10):2423-2436. PubMed ID: 30207688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis inside the Hexameric Resorcinarene Capsule.
    Zhang Q; Catti L; Tiefenbacher K
    Acc Chem Res; 2018 Sep; 51(9):2107-2114. PubMed ID: 30153000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a supramolecular-ligand library for the automated search for catalysts for the asymmetric hydrogenation of industrially relevant substrates.
    Meeuwissen J; Kuil M; van der Burg AM; Sandee AJ; Reek JN
    Chemistry; 2009 Oct; 15(39):10272-9. PubMed ID: 19731274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cation-Anion Arrangement Patterns in Self-Assembled Pd
    Clever GH; Punt P
    Acc Chem Res; 2017 Sep; 50(9):2233-2243. PubMed ID: 28817257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulated transition metal catalysts comprising peripheral Zn(II)salen building blocks: template-controlled reactivity and selectivity in hydroformylation catalysis.
    Kleij AW; Lutz M; Spek AL; van Leeuwen PW; Reek JN
    Chem Commun (Camb); 2005 Aug; (29):3661-3. PubMed ID: 16027903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-Catalyzed C-H Functionalizations.
    Ye B; Cramer N
    Acc Chem Res; 2015 May; 48(5):1308-18. PubMed ID: 25884306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones.
    Li YY; Yu SL; Shen WY; Gao JX
    Acc Chem Res; 2015 Sep; 48(9):2587-98. PubMed ID: 26301426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations.
    Liu W; Sahoo B; Junge K; Beller M
    Acc Chem Res; 2018 Aug; 51(8):1858-1869. PubMed ID: 30091891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Side arm strategy for catalyst design: modifying bisoxazolines for remote control of enantioselection and related.
    Liao S; Sun XL; Tang Y
    Acc Chem Res; 2014 Aug; 47(8):2260-72. PubMed ID: 24837859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capsule-controlled selectivity of a rhodium hydroformylation catalyst.
    Bocokić V; Kalkan A; Lutz M; Spek AL; Gryko DT; Reek JN
    Nat Commun; 2013; 4():2670. PubMed ID: 24150228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.