These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 30138334)

  • 1. The thirsty fly: Ion transport peptide (ITP) is a novel endocrine regulator of water homeostasis in Drosophila.
    Gáliková M; Dircksen H; Nässel DR
    PLoS Genet; 2018 Aug; 14(8):e1007618. PubMed ID: 30138334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hunger and thirst interact to regulate ingestive behavior in flies and mammals.
    Jourjine N
    Bioessays; 2017 May; 39(5):. PubMed ID: 28319257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion transport peptide regulates energy intake, expenditure, and metabolic homeostasis in Drosophila.
    Gáliková M; Klepsatel P
    Genetics; 2022 Nov; 222(4):. PubMed ID: 36190340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a set of abdominal neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in Drosophila.
    Zandawala M; Marley R; Davies SA; Nässel DR
    Cell Mol Life Sci; 2018 Mar; 75(6):1099-1115. PubMed ID: 29043393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ion transport peptide is a new functional clock neuropeptide in the fruit fly Drosophila melanogaster.
    Hermann-Luibl C; Yoshii T; Senthilan PR; Dircksen H; Helfrich-Förster C
    J Neurosci; 2014 Jul; 34(29):9522-36. PubMed ID: 25031396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization, localization, and physiological roles of ITP and ITP-L in the mosquito,
    Sajadi F; Paluzzi JV
    Front Insect Sci; 2024; 4():1374325. PubMed ID: 38654748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neuroendocrine pathway modulating osmotic stress in Drosophila.
    Zandawala M; Nguyen T; Balanyà Segura M; Johard HAD; Amcoff M; Wegener C; Paluzzi JP; Nässel DR
    PLoS Genet; 2021 Mar; 17(3):e1009425. PubMed ID: 33684132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thirst interneurons that promote water seeking and limit feeding behavior in
    Landayan D; Wang BP; Zhou J; Wolf FW
    Elife; 2021 May; 10():. PubMed ID: 34018925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion.
    González Segarra AJ; Pontes G; Jourjine N; Del Toro A; Scott K
    Elife; 2023 Sep; 12():. PubMed ID: 37732734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neural mechanism for deprivation state-specific expression of relevant memories in Drosophila.
    Senapati B; Tsao CH; Juan YA; Chiu TH; Wu CL; Waddell S; Lin S
    Nat Neurosci; 2019 Dec; 22(12):2029-2039. PubMed ID: 31659341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled Sensing of Hunger and Thirst Signals Balances Sugar and Water Consumption.
    Jourjine N; Mullaney BC; Mann K; Scott K
    Cell; 2016 Aug; 166(4):855-866. PubMed ID: 27477513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster.
    Cannell E; Dornan AJ; Halberg KA; Terhzaz S; Dow JAT; Davies SA
    Peptides; 2016 Jun; 80():96-107. PubMed ID: 26896569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serotonin and insulin-like peptides modulate leucokinin-producing neurons that affect feeding and water homeostasis in Drosophila.
    Liu Y; Luo J; Carlsson MA; Nässel DR
    J Comp Neurol; 2015 Aug; 523(12):1840-63. PubMed ID: 25732325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systemic corazonin signalling modulates stress responses and metabolism in Drosophila.
    Kubrak OI; Lushchak OV; Zandawala M; Nässel DR
    Open Biol; 2016 Nov; 6(11):. PubMed ID: 27810969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fly's eye view of zinc homeostasis: Novel insights into the genetic control of zinc metabolism from Drosophila.
    Richards CD; Burke R
    Arch Biochem Biophys; 2016 Dec; 611():142-149. PubMed ID: 27453039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insect ion transport peptides are derived from alternatively spliced genes and differentially expressed in the central and peripheral nervous system.
    Dircksen H
    J Exp Biol; 2009 Feb; 212(Pt 3):401-12. PubMed ID: 19151215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulation of components that control feeding behavior in Drosophila melanogaster increases sensitivity to amino acid starvation.
    Slade JD; Staveley BE
    Genet Mol Res; 2016 Feb; 15(1):. PubMed ID: 26909968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior.
    Nässel DR; Zandawala M
    Prog Neurobiol; 2019 Aug; 179():101607. PubMed ID: 30905728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insect capa neuropeptides impact desiccation and cold tolerance.
    Terhzaz S; Teets NM; Cabrero P; Henderson L; Ritchie MG; Nachman RJ; Dow JA; Denlinger DL; Davies SA
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2882-7. PubMed ID: 25730885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel regulator of thirst behavior: phoenixin.
    Haddock CJ; Almeida-Pereira G; Stein LM; Yosten GLC; Samson WK
    Am J Physiol Regul Integr Comp Physiol; 2020 Jun; 318(6):R1027-R1035. PubMed ID: 32292064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.