BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 30138362)

  • 1. The mode of interfragmentary movement affects bone formation and revascularization after callus distraction.
    Claes L; Meyers N; Schülke J; Reitmaier S; Klose S; Ignatius A
    PLoS One; 2018; 13(8):e0202702. PubMed ID: 30138362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramembranous bone formation after callus distraction is augmented by increasing axial compressive strain.
    Schuelke J; Meyers N; Reitmaier S; Klose S; Ignatius A; Claes L
    PLoS One; 2018; 13(4):e0195466. PubMed ID: 29624608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of cyclic compression and distraction on the healing of experimental tibial fractures.
    Hente R; Füchtmeier B; Schlegel U; Ernstberger A; Perren SM
    J Orthop Res; 2004 Jul; 22(4):709-15. PubMed ID: 15183425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of compression on the healing of experimental tibial fractures.
    Sigurdsen U; Reikeras O; Utvag SE
    Injury; 2011 Oct; 42(10):1152-6. PubMed ID: 20850739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for lateral callus distraction and its importance for the mechano-biology of bone formation.
    Claes L; Veeser A; Göckelmann M; Horvath D; Dürselen L; Ignatius A
    Bone; 2010 Oct; 47(4):712-7. PubMed ID: 20637324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel systems for the application of isolated tensile, compressive, and shearing stimulation of distraction callus tissue.
    Meyers N; Schülke J; Ignatius A; Claes L
    PLoS One; 2017; 12(12):e0189432. PubMed ID: 29228043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Callus Distraction in the Treatment of Post-Traumatic Defects of the Femur and Tibia].
    Veselý R; Procházka V
    Acta Chir Orthop Traumatol Cech; 2016; 83(6):388-392. PubMed ID: 28026734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear movement at the fracture site delays healing in a diaphyseal fracture model.
    Augat P; Burger J; Schorlemmer S; Henke T; Peraus M; Claes L
    J Orthop Res; 2003 Nov; 21(6):1011-7. PubMed ID: 14554213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Percutaneous CO2 Treatment Accelerates Bone Generation During Distraction Osteogenesis in Rabbits.
    Kumabe Y; Fukui T; Takahara S; Kuroiwa Y; Arakura M; Oe K; Oda T; Sawauchi K; Matsushita T; Matsumoto T; Hayashi S; Kuroda R; Niikura T
    Clin Orthop Relat Res; 2020 Aug; 478(8):1922-1935. PubMed ID: 32732577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure, oxygen tension and temperature in the periosteal callus during bone healing--an in vivo study in sheep.
    Epari DR; Lienau J; Schell H; Witt F; Duda GN
    Bone; 2008 Oct; 43(4):734-9. PubMed ID: 18634913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Callus stimulation in distraction osteogenesis.
    Mofid MM; Inoue N; Atabey A; Marti G; Chao EY; Manson PN; Vander Kolk CA
    Plast Reconstr Surg; 2002 Apr; 109(5):1621-9. PubMed ID: 11932606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Principles of callus distraction].
    Hankemeier S; Bastian L; Gosling T; Krettek C
    Unfallchirurg; 2004 Oct; 107(10):945-58; quiz 959. PubMed ID: 15452653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-intensity pulsed ultrasound enhances callus consolidation in distraction osteogenesis of the tibia by the technique of lengthening over the nail procedure.
    Song MH; Kim TJ; Kang SH; Song HR
    BMC Musculoskelet Disord; 2019 Mar; 20(1):108. PubMed ID: 30871538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CYR61 (CCN1) protein expression during fracture healing in an ovine tibial model and its relation to the mechanical fixation stability.
    Lienau J; Schell H; Epari DR; Schütze N; Jakob F; Duda GN; Bail HJ
    J Orthop Res; 2006 Feb; 24(2):254-62. PubMed ID: 16435358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the fixator stiffness on the young regenerate bone after bone transport: computational approach.
    Reina-Romo E; Gómez-Benito MJ; Domínguez J; Niemeyer F; Wehner T; Simon U; Claes LE
    J Biomech; 2011 Mar; 44(5):917-23. PubMed ID: 21168137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-intensity pulsed ultrasound accelerates bone maturation in distraction osteogenesis in rabbits.
    Shimazaki A; Inui K; Azuma Y; Nishimura N; Yamano Y
    J Bone Joint Surg Br; 2000 Sep; 82(7):1077-82. PubMed ID: 11041605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical and densitometric bone properties after callus distraction in sheep.
    Reichel H; Lebek S; Alter C; Hein W
    Clin Orthop Relat Res; 1998 Dec; (357):237-46. PubMed ID: 9917722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporary distraction and compression of a diaphyseal osteotomy accelerates bone healing.
    Claes L; Augat P; Schorlemmer S; Konrads C; Ignatius A; Ehrnthaller C
    J Orthop Res; 2008 Jun; 26(6):772-7. PubMed ID: 18240329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Callus distraction of femur and tibia. Experiences with the mono-fixateur--indications for procedural changes].
    Hessmann M; Rommens PM; Hainson K
    Unfallchirurg; 1998 May; 101(5):370-6. PubMed ID: 9629049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiographic results of callus distraction aided by pulsed low-intensity ultrasound.
    Mayr E; Laule A; Suger G; Rüter A; Claes L
    J Orthop Trauma; 2001 Aug; 15(6):407-14. PubMed ID: 11514767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.