BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 30138566)

  • 1. The Tetrazole Analogue of the Auxin Indole-3-acetic Acid Binds Preferentially to TIR1 and Not AFB5.
    Quareshy M; Prusinska J; Kieffer M; Fukui K; Pardal AJ; Lehmann S; Schafer P; Del Genio CI; Kepinski S; Hayashi K; Marsh A; Napier RM
    ACS Chem Biol; 2018 Sep; 13(9):2585-2594. PubMed ID: 30138566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Arabidopsis Auxin Receptor F-Box Proteins AFB4 and AFB5 Are Required for Response to the Synthetic Auxin Picloram.
    Prigge MJ; Greenham K; Zhang Y; Santner A; Castillejo C; Mutka AM; O'Malley RC; Ecker JR; Kunkel BN; Estelle M
    G3 (Bethesda); 2016 May; 6(5):1383-90. PubMed ID: 26976444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis.
    Walsh TA; Neal R; Merlo AO; Honma M; Hicks GR; Wolff K; Matsumura W; Davies JP
    Plant Physiol; 2006 Oct; 142(2):542-52. PubMed ID: 16920877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation.
    Lee S; Sundaram S; Armitage L; Evans JP; Hawkes T; Kepinski S; Ferro N; Napier RM
    ACS Chem Biol; 2014 Mar; 9(3):673-82. PubMed ID: 24313839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in the TIR1 auxin receptor that increase affinity for auxin/indole-3-acetic acid proteins result in auxin hypersensitivity.
    Yu H; Moss BL; Jang SS; Prigge M; Klavins E; Nemhauser JL; Estelle M
    Plant Physiol; 2013 May; 162(1):295-303. PubMed ID: 23539280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exogenous Auxin Induces Transverse Microtubule Arrays Through TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX Receptors.
    True JH; Shaw SL
    Plant Physiol; 2020 Feb; 182(2):892-907. PubMed ID: 31767691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor.
    Terrile MC; París R; Calderón-Villalobos LI; Iglesias MJ; Lamattina L; Estelle M; Casalongué CA
    Plant J; 2012 May; 70(3):492-500. PubMed ID: 22171938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of auxin perception by the TIR1 ubiquitin ligase.
    Tan X; Calderon-Villalobos LI; Sharon M; Zheng C; Robinson CV; Estelle M; Zheng N
    Nature; 2007 Apr; 446(7136):640-5. PubMed ID: 17410169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin.
    Calderón Villalobos LI; Lee S; De Oliveira C; Ivetac A; Brandt W; Armitage L; Sheard LB; Tan X; Parry G; Mao H; Zheng N; Napier R; Kepinski S; Estelle M
    Nat Chem Biol; 2012 Apr; 8(5):477-85. PubMed ID: 22466420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auxin sensitivities of all Arabidopsis Aux/IAAs for degradation in the presence of every TIR1/AFB.
    Shimizu-Mitao Y; Kakimoto T
    Plant Cell Physiol; 2014 Aug; 55(8):1450-9. PubMed ID: 24880779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of an auxin antagonist of the SCF(TIR1) auxin receptor complex.
    Hayashi K; Neve J; Hirose M; Kuboki A; Shimada Y; Kepinski S; Nozaki H
    ACS Chem Biol; 2012 Mar; 7(3):590-8. PubMed ID: 22234040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxin-induced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation.
    Maraschin Fdos S; Memelink J; Offringa R
    Plant J; 2009 Jul; 59(1):100-9. PubMed ID: 19309453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Molecular Framework for the Control of Adventitious Rooting by TIR1/AFB2-Aux/IAA-Dependent Auxin Signaling in Arabidopsis.
    Lakehal A; Chaabouni S; Cavel E; Le Hir R; Ranjan A; Raneshan Z; Novák O; Păcurar DI; Perrone I; Jobert F; Gutierrez L; Bakò L; Bellini C
    Mol Plant; 2019 Nov; 12(11):1499-1514. PubMed ID: 31520787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auxin signaling through SCF
    Takato S; Kakei Y; Mitsui M; Ishida Y; Suzuki M; Yamazaki C; Hayashi KI; Ishii T; Nakamura A; Soeno K; Shimada Y
    Biosci Biotechnol Biochem; 2017 Jul; 81(7):1320-1326. PubMed ID: 28406060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The F-box protein TIR1 is an auxin receptor.
    Dharmasiri N; Dharmasiri S; Estelle M
    Nature; 2005 May; 435(7041):441-5. PubMed ID: 15917797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A network of stress-related genes regulates hypocotyl elongation downstream of selective auxin perception.
    Rigal A; Doyle SM; Ritter A; Raggi S; Vain T; O'Brien JA; Goossens A; Pauwels L; Robert S
    Plant Physiol; 2021 Sep; 187(1):430-445. PubMed ID: 34618142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HSP90 stabilizes auxin receptor TIR1 and ensures plasticity of auxin responses.
    Watanabe E; Mano S; Hara-Nishimura I; Nishimura M; Yamada K
    Plant Signal Behav; 2017 May; 12(5):e1311439. PubMed ID: 28532230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba.
    Gleason C; Foley RC; Singh KB
    PLoS One; 2011 Mar; 6(3):e17245. PubMed ID: 21408147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auxin receptors and plant development: a new signaling paradigm.
    Mockaitis K; Estelle M
    Annu Rev Cell Dev Biol; 2008; 24():55-80. PubMed ID: 18631113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Super Strong Engineered Auxin-TIR1 Pair.
    Yamada R; Murai K; Uchida N; Takahashi K; Iwasaki R; Tada Y; Kinoshita T; Itami K; Torii KU; Hagihara S
    Plant Cell Physiol; 2018 Aug; 59(8):1538-1544. PubMed ID: 29986114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.