These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 30138652)
1. Lipid accumulation in multi-walled carbon nanotube-exposed HepG2 cells: Possible role of lipophagy pathway. Zhao C; Zhou Y; Liu L; Long J; Liu H; Li J; Cao Y Food Chem Toxicol; 2018 Nov; 121():65-71. PubMed ID: 30138652 [TBL] [Abstract][Full Text] [Related]
2. Multi-walled carbon nanotubes (MWCNTs) promoted lipid accumulation in THP-1 macrophages through modulation of endoplasmic reticulum (ER) stress. Long J; Ma W; Yu Z; Liu H; Cao Y Nanotoxicology; 2019 Sep; 13(7):938-951. PubMed ID: 31012781 [TBL] [Abstract][Full Text] [Related]
3. The adverse vascular effects of multi-walled carbon nanotubes (MWCNTs) to human vein endothelial cells (HUVECs) in vitro: role of length of MWCNTs. Long J; Xiao Y; Liu L; Cao Y J Nanobiotechnology; 2017 Nov; 15(1):80. PubMed ID: 29126419 [TBL] [Abstract][Full Text] [Related]
4. The toxicity of multi-walled carbon nanotubes (MWCNTs) to human endothelial cells: The influence of diameters of MWCNTs. Zhao X; Chang S; Long J; Li J; Li X; Cao Y Food Chem Toxicol; 2019 Apr; 126():169-177. PubMed ID: 30802478 [TBL] [Abstract][Full Text] [Related]
5. Cytotoxicity, cytokine release and ER stress-autophagy gene expression in endothelial cells and alveolar-endothelial co-culture exposed to pristine and carboxylated multi-walled carbon nanotubes. Chang S; Zhao X; Li S; Liao T; Long J; Yu Z; Cao Y Ecotoxicol Environ Saf; 2018 Oct; 161():569-577. PubMed ID: 29929133 [TBL] [Abstract][Full Text] [Related]
6. Multi-walled carbon nanotubes promoted lipid accumulation in human aortic smooth muscle cells. Yang H; Li J; Yang C; Liu H; Cao Y Toxicol Appl Pharmacol; 2019 Jul; 374():11-19. PubMed ID: 31047983 [TBL] [Abstract][Full Text] [Related]
7. Multi-Walled Carbon Nanotubes (MWCNTs) Activate Apoptotic Pathway Through ER Stress: Does Surface Chemistry Matter? Sun Y; Gong J; Cao Y Int J Nanomedicine; 2019; 14():9285-9294. PubMed ID: 31819430 [TBL] [Abstract][Full Text] [Related]
8. Induction of lipid droplets in THP-1 macrophages by multi-walled carbon nanotubes in a diameter-dependent manner: A transcriptomic study. Yang T; Chen J; Gao L; Huang Y; Liao G; Cao Y Toxicol Lett; 2020 Oct; 332():65-73. PubMed ID: 32649966 [TBL] [Abstract][Full Text] [Related]
10. Multi-walled carbon nanotubes (MWCNTs) transformed THP-1 macrophages into foam cells: Impact of pulmonary surfactant component dipalmitoylphosphatidylcholine. Lin J; Jiang Y; Luo Y; Guo H; Huang C; Peng J; Cao Y J Hazard Mater; 2020 Jun; 392():122286. PubMed ID: 32086094 [TBL] [Abstract][Full Text] [Related]
11. 3-Hydroxyflavone enhances the toxicity of ZnO nanoparticles in vitro. Luo Y; Wu C; Liu L; Gong Y; Peng S; Xie Y; Cao Y J Appl Toxicol; 2018 Sep; 38(9):1206-1214. PubMed ID: 29691881 [TBL] [Abstract][Full Text] [Related]
12. Influences of Unmodified and Carboxylated Carbon Nanotubes on Lipid Profiles in THP-1 Macrophages: A Lipidomics Study. Pei L; Yang W; Cao Y Int J Toxicol; 2022; 41(1):16-25. PubMed ID: 34886715 [TBL] [Abstract][Full Text] [Related]
13. Lipophagy mediated carbohydrate-induced changes of lipid metabolism via oxidative stress, endoplasmic reticulum (ER) stress and ChREBP/PPARγ pathways. Zhao T; Wu K; Hogstrand C; Xu YH; Chen GH; Wei CC; Luo Z Cell Mol Life Sci; 2020 May; 77(10):1987-2003. PubMed ID: 31392349 [TBL] [Abstract][Full Text] [Related]
14. Influence of bovine serum albumin pre-incubation on toxicity and ER stress-apoptosis gene expression in THP-1 macrophages exposed to ZnO nanoparticles. Liang H; He T; Long J; Liu L; Liao G; Ding Y; Cao Y Toxicol Mech Methods; 2018 Oct; 28(8):587-598. PubMed ID: 29783874 [TBL] [Abstract][Full Text] [Related]
15. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles. Vesterdal LK; Danielsen PH; Folkmann JK; Jespersen LF; Aguilar-Pelaez K; Roursgaard M; Loft S; Møller P Toxicol Appl Pharmacol; 2014 Jan; 274(2):350-60. PubMed ID: 24121055 [TBL] [Abstract][Full Text] [Related]
16. Influence of pristine and hydrophobic ZnO nanoparticles on cytotoxicity and endoplasmic reticulum (ER) stress-autophagy-apoptosis gene expression in A549-macrophage co-culture. Liu T; Liang H; Liu L; Gong Y; Ding Y; Liao G; Cao Y Ecotoxicol Environ Saf; 2019 Jan; 167():188-195. PubMed ID: 30340083 [TBL] [Abstract][Full Text] [Related]
17. The constitutive lipid droplet protein PLIN2 regulates autophagy in liver. Tsai TH; Chen E; Li L; Saha P; Lee HJ; Huang LS; Shelness GS; Chan L; Chang BH Autophagy; 2017 Jul; 13(7):1130-1144. PubMed ID: 28548876 [TBL] [Abstract][Full Text] [Related]
18. Reactive Oxygen Species Induces Lipid Droplet Accumulation in HepG2 Cells by Increasing Perilipin 2 Expression. Jin Y; Tan Y; Chen L; Liu Y; Ren Z Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400205 [TBL] [Abstract][Full Text] [Related]
19. Formononetin alleviates hepatic steatosis by facilitating TFEB-mediated lysosome biogenesis and lipophagy. Wang Y; Zhao H; Li X; Wang Q; Yan M; Zhang H; Zhao T; Zhang N; Zhang P; Peng L; Li P J Nutr Biochem; 2019 Nov; 73():108214. PubMed ID: 31520816 [TBL] [Abstract][Full Text] [Related]
20. Polystyrene nanoplastics induce lipophagy via the AMPK/ULK1 pathway and block lipophagic flux leading to lipid accumulation in hepatocytes. Fan Z; Zhang Y; Fang Y; Zhong H; Wei T; Akhtar H; Zhang J; Yang M; Li Y; Zhou X; Sun Z; Wang J J Hazard Mater; 2024 Sep; 476():134878. PubMed ID: 38897115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]