BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3013867)

  • 1. Role of glycosylation in transport of vesicular stomatitis virus envelope glycoprotein. A new class of mutant defective in glycosylation and transport of G protein.
    Kotwal GJ; Buller ML; Wunner WH; Pringle CR; Ghosh HP
    J Biol Chem; 1986 Jul; 261(19):8936-43. PubMed ID: 3013867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fusion-defective mutant of the vesicular stomatitis virus glycoprotein.
    Whitt MA; Zagouras P; Crise B; Rose JK
    J Virol; 1990 Oct; 64(10):4907-13. PubMed ID: 2168975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-sensitive mutants of vesicular stomatitis virus: synthesis of virus-specific proteins.
    Printz P; Wagner RR
    J Virol; 1971 May; 7(5):651-62. PubMed ID: 4104253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface.
    Machamer CE; Florkiewicz RZ; Rose JK
    Mol Cell Biol; 1985 Nov; 5(11):3074-83. PubMed ID: 3018499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport pathway, maturation, and targetting of the vesicular stomatitis virus glycoprotein in skeletal muscle fibers.
    Rahkila P; Alakangas A; Väänänen K; Metsikkö K
    J Cell Sci; 1996 Jun; 109 ( Pt 6)():1585-96. PubMed ID: 8799845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible block in intracellular transport and budding of mutant vesicular stomatitis virus glycoproteins.
    Lodish HF; Kong N
    Virology; 1983 Mar; 125(2):335-48. PubMed ID: 6301145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective isolation of mutants of vesicular stomatitis virus defective in production of the viral glycoprotein.
    Lodish HF; Weiss RA
    J Virol; 1979 Apr; 30(1):177-89. PubMed ID: 225514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of mutations in three domains of the vesicular stomatitis viral glycoprotein on its lateral diffusion in the plasma membrane.
    Scullion BF; Hou Y; Puddington L; Rose JK; Jacobson K
    J Cell Biol; 1987 Jul; 105(1):69-75. PubMed ID: 3038931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational changes in the vesicular stomatitis virus glycoprotein affect the requirement of carbohydrate in morphogenesis.
    Chatis PA; Morrison TG
    J Virol; 1981 Jan; 37(1):307-16. PubMed ID: 6260984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The budding mechanism of spikeless vesicular stomatitis virus particles.
    Metsikkö K; Simons K
    EMBO J; 1986 Aug; 5(8):1913-20. PubMed ID: 3019669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligosaccharides of the Hazelhurst vesicular stomatitis virus glycoprotein are more extensively processed in Rous sarcoma virus-transformed baby hamster kidney cells.
    Hunt LA
    Biochim Biophys Acta; 1987 Apr; 924(1):175-84. PubMed ID: 3030442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoplasmic domains of cellular and viral integral membrane proteins substitute for the cytoplasmic domain of the vesicular stomatitis virus glycoprotein in transport to the plasma membrane.
    Puddington L; Machamer CE; Rose JK
    J Cell Biol; 1986 Jun; 102(6):2147-57. PubMed ID: 3011809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of polymannose oligosaccharides from vesicular stomatitis virus G protein during endoplasmic reticulum-associated degradation.
    Spiro MJ; Spiro RG
    Glycobiology; 2001 Oct; 11(10):803-11. PubMed ID: 11588156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutants of vesicular stomatitis virus blocked at different stages in maturation of the viral glycoprotein.
    Zilberstein A; Snider MD; Porter M; Lodish HF
    Cell; 1980 Sep; 21(2):417-27. PubMed ID: 6250721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single amino acid substitution in a hydrophobic domain causes temperature-sensitive cell-surface transport of a mutant viral glycoprotein.
    Gallione CJ; Rose JK
    J Virol; 1985 May; 54(2):374-82. PubMed ID: 2985803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further characterization of the vesicular stomatitis virus temperature-sensitive O45 mutant: intracellular conversion of the glycoprotein to a soluble form.
    Chen SS; Huang AS
    J Virol; 1986 Aug; 59(2):210-5. PubMed ID: 3016292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface.
    Kreis TE; Lodish HF
    Cell; 1986 Sep; 46(6):929-37. PubMed ID: 3019557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycoprotein cytoplasmic domain sequences required for rescue of a vesicular stomatitis virus glycoprotein mutant.
    Whitt MA; Chong L; Rose JK
    J Virol; 1989 Sep; 63(9):3569-78. PubMed ID: 2547986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vesicular stomatitis virus-infected cells fuse when the intracellular pool of functional M protein is reduced in the presence of G protein.
    Storey DG; Kang CY
    J Virol; 1985 Feb; 53(2):374-83. PubMed ID: 2982025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the putative fusogenic domain in vesicular stomatitis virus glycoprotein G.
    Zhang L; Ghosh HP
    J Virol; 1994 Apr; 68(4):2186-93. PubMed ID: 8139003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.