These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 3013899)
1. Membrane traffic in animal cells: cellular glycoproteins return to the site of Golgi mannosidase I. Snider MD; Rogers OC J Cell Biol; 1986 Jul; 103(1):265-75. PubMed ID: 3013899 [TBL] [Abstract][Full Text] [Related]
2. Recycling glycoproteins do not return to the cis-Golgi. Neefjes JJ; Verkerk JM; Broxterman HJ; van der Marel GA; van Boom JH; Ploegh HL J Cell Biol; 1988 Jul; 107(1):79-87. PubMed ID: 2839522 [TBL] [Abstract][Full Text] [Related]
3. Selective reentry of recycling cell surface glycoproteins to the biosynthetic pathway in human hepatocarcinoma HepG2 cells. Volz B; Orberger G; Porwoll S; Hauri HP; Tauber R J Cell Biol; 1995 Aug; 130(3):537-51. PubMed ID: 7622556 [TBL] [Abstract][Full Text] [Related]
4. The use of 1-deoxymannojirimycin to evaluate the role of various alpha-mannosidases in oligosaccharide processing in intact cells. Bischoff J; Liscum L; Kornfeld R J Biol Chem; 1986 Apr; 261(10):4766-74. PubMed ID: 2937779 [TBL] [Abstract][Full Text] [Related]
5. Role of oligosaccharides in the processing and maturation of envelope glycoproteins of human immunodeficiency virus type 1. Pal R; Hoke GM; Sarngadharan MG Proc Natl Acad Sci U S A; 1989 May; 86(9):3384-8. PubMed ID: 2541446 [TBL] [Abstract][Full Text] [Related]
6. Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex. Lodish HF; Kong N J Cell Biol; 1984 May; 98(5):1720-9. PubMed ID: 6233287 [TBL] [Abstract][Full Text] [Related]
7. Asparagine-linked glycoprotein biosynthesis in rat epididymis. Presence of a mannosidase II-like enzyme. Skudlarek MD; Orgebin-Crist MC; Tulsiani DR Biochem J; 1991 Jul; 277 ( Pt 1)(Pt 1):213-21. PubMed ID: 1906709 [TBL] [Abstract][Full Text] [Related]
8. Novel mannosidase inhibitor blocking conversion of high mannose to complex oligosaccharides. Fuhrmann U; Bause E; Legler G; Ploegh H Nature; 1984 Feb 23-29; 307(5953):755-8. PubMed ID: 6230538 [TBL] [Abstract][Full Text] [Related]
9. Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. Elbein AD; Tropea JE; Mitchell M; Kaushal GP J Biol Chem; 1990 Sep; 265(26):15599-605. PubMed ID: 2144287 [TBL] [Abstract][Full Text] [Related]
10. Intracellular movement of two mannose 6-phosphate receptors: return to the Golgi apparatus. Duncan JR; Kornfeld S J Cell Biol; 1988 Mar; 106(3):617-28. PubMed ID: 2964450 [TBL] [Abstract][Full Text] [Related]
11. Glycoprotein recycling to the galactosyltransferase compartment of the Golgi complex. Huang KM; Snider MD J Biol Chem; 1993 May; 268(13):9302-10. PubMed ID: 8486626 [TBL] [Abstract][Full Text] [Related]
12. Swainsonine, a potent mannosidase inhibitor, elevates rat liver and brain lysosomal alpha-D-mannosidase, decreases Golgi alpha-D-mannosidase II, and increases the plasma levels of several acid hydrolases. Tulsiani DR; Touster O Arch Biochem Biophys; 1983 Jul; 224(2):594-600. PubMed ID: 6408990 [TBL] [Abstract][Full Text] [Related]
13. Marked differences in the swainsonine inhibition of rat liver lysosomal alpha-D-mannosidase, rat liver Golgi mannosidase II, and jack bean alpha-D-mannosidase. Tulsiani DR; Broquist HP; Touster O Arch Biochem Biophys; 1985 Jan; 236(1):427-34. PubMed ID: 3917650 [TBL] [Abstract][Full Text] [Related]
14. Efficient routing of glucocerebrosidase to lysosomes requires complex oligosaccharide chain formation. Aerts JM; Brul S; Donker-Koopman WE; van Weely S; Murray GJ; Barranger JA; Tager JM; Schram AW Biochem Biophys Res Commun; 1986 Dec; 141(2):452-8. PubMed ID: 2948505 [TBL] [Abstract][Full Text] [Related]
15. Asynchronous transport to the cell surface of intestinal brush border hydrolases is not due to differential trimming of N-linked oligosaccharides. Matter K; McDowell W; Schwartz RT; Hauri HP J Biol Chem; 1989 Aug; 264(22):13131-9. PubMed ID: 2526812 [TBL] [Abstract][Full Text] [Related]
16. The N-glycan processing in HT-29 cells is a function of their state of enterocytic differentiation. Evidence for an atypical traffic associated with change in polypeptide stability in undifferentiated HT-29 cells. Trugnan G; Ogier-Denis E; Sapin C; Darmoul D; Bauvy C; Aubery M; Codogno P J Biol Chem; 1991 Nov; 266(31):20849-55. PubMed ID: 1834650 [TBL] [Abstract][Full Text] [Related]
17. The mannosidase inhibitors 1-deoxymannojirimycin and swainsonine have no effect on the biosynthesis and infectivity of Rous sarcoma virus. Bosch JV; Tlusty A; McDowell W; Legler G; Schwarz RT Virology; 1985 May; 143(1):342-6. PubMed ID: 2998010 [TBL] [Abstract][Full Text] [Related]
18. Effects of the alpha-mannosidase inhibitors, 1,4-dideoxy-1,4-imino-D-mannitol and swainsonine, on glycoprotein catabolism in cultured macrophages. Daniel PF; Newburg DS; O'Neil NE; Smith PW; Fleet GW Glycoconj J; 1989; 6(2):229-40. PubMed ID: 2535594 [TBL] [Abstract][Full Text] [Related]
19. Pleiotropic resistance to glycoprotein processing inhibitors in Chinese hamster ovary cells. The role of a novel mutation in the asparagine-linked glycosylation pathway. Lehrman MA; Zeng Y J Biol Chem; 1989 Jan; 264(3):1584-93. PubMed ID: 2521484 [TBL] [Abstract][Full Text] [Related]
20. Swainsonine is a useful tool to monitor the intracellular traffic of N-linked glycoproteins as a function of the state of enterocytic differentiation of HT-29 cells. Houri JJ; Ogier-Denis E; Bauvy C; Aubery M; Sapin C; Trugnan G; Codogno P Eur J Biochem; 1992 May; 205(3):1169-74. PubMed ID: 1577000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]