These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 30139044)
41. Lab-on-CMOS integration of microfluidics and electrochemical sensors. Huang Y; Mason AJ Lab Chip; 2013 Oct; 13(19):3929-34. PubMed ID: 23939616 [TBL] [Abstract][Full Text] [Related]
42. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Phan DTT; Wang X; Craver BM; Sobrino A; Zhao D; Chen JC; Lee LYN; George SC; Lee AP; Hughes CCW Lab Chip; 2017 Jan; 17(3):511-520. PubMed ID: 28092382 [TBL] [Abstract][Full Text] [Related]
43. A novel microfluidic microelectrode chip for a significantly enhanced monitoring of NPY-receptor activation in live mode. Zitzmann FD; Jahnke HG; Nitschke F; Beck-Sickinger AG; Abel B; Belder D; Robitzki AA Lab Chip; 2017 Dec; 17(24):4294-4302. PubMed ID: 29119176 [TBL] [Abstract][Full Text] [Related]
44. Toward High Throughput Core-CBCM CMOS Capacitive Sensors for Life Science Applications: A Novel Current-Mode for High Dynamic Range Circuitry. Forouhi S; Dehghani R; Ghafar-Zadeh E Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30304843 [TBL] [Abstract][Full Text] [Related]
45. Influence of Culture Conditions on Cell Proliferation in a Microfluidic Channel. Sato K; Sato M; Yokoyama M; Hirai M; Furuta A Anal Sci; 2019 Jan; 35(1):49-56. PubMed ID: 30473567 [TBL] [Abstract][Full Text] [Related]
47. Single-neuronal cell culture and monitoring platform using a fully transparent microfluidic DEP device. Kim H; Lee IK; Taylor K; Richters K; Baek DH; Ryu JH; Cho SJ; Jung YH; Park DW; Novello J; Bong J; Suminski AJ; Dingle AM; Blick RH; Williams JC; Dent EW; Ma Z Sci Rep; 2018 Sep; 8(1):13194. PubMed ID: 30181589 [TBL] [Abstract][Full Text] [Related]
52. Drug testing and characterization using human-on-chip (HoC) systems: some thoughts on the application of in vitro-in vivo correlation. Somayaji MR; Das D; Przekwas AJ Drug Discov Today; 2018 Sep; 23(9):1571-1573. PubMed ID: 29428643 [No Abstract] [Full Text] [Related]
53. High-Throughput 3D Tumor Culture in a Recyclable Microfluidic Platform. Liu W; Wang J Methods Mol Biol; 2017; 1612():293-301. PubMed ID: 28634952 [TBL] [Abstract][Full Text] [Related]
54. Digital Microfluidic Cell Culture. Ng AH; Li BB; Chamberlain MD; Wheeler AR Annu Rev Biomed Eng; 2015; 17():91-112. PubMed ID: 26643019 [TBL] [Abstract][Full Text] [Related]
55. Dielectrophoretic lab-on-CMOS platform for trapping and manipulation of cells. Park K; Kabiri S; Sonkusale S Biomed Microdevices; 2016 Feb; 18(1):6. PubMed ID: 26780441 [TBL] [Abstract][Full Text] [Related]
56. Integrated cell manipulation system--CMOS/microfluidic hybrid. Lee H; Liu Y; Ham D; Westervelt RM Lab Chip; 2007 Mar; 7(3):331-7. PubMed ID: 17330164 [TBL] [Abstract][Full Text] [Related]
57. Multi-channel cell co-culture for drug development based on glass microfluidic chip-mass spectrometry coupled platform. Wu J; Jie M; Dong X; Qi H; Lin JM Rapid Commun Mass Spectrom; 2016 Aug; 30 Suppl 1():80-6. PubMed ID: 27539420 [TBL] [Abstract][Full Text] [Related]
58. A Bioprinted Liver-on-a-Chip for Drug Screening Applications. Knowlton S; Tasoglu S Trends Biotechnol; 2016 Sep; 34(9):681-682. PubMed ID: 27291461 [TBL] [Abstract][Full Text] [Related]
59. The effects of insulin-like growth factor-1 and basic fibroblast growth factor on the proliferation of chondrocytes embedded in the collagen gel using an integrated microfluidic device. Li Y; Qin J; Lin B; Zhang W Tissue Eng Part C Methods; 2010 Dec; 16(6):1267-75. PubMed ID: 20205532 [TBL] [Abstract][Full Text] [Related]
60. Correlation of Capacitance and Microscopy Measurements Using Image Processing for a Lab-on-CMOS Microsystem. Senevirathna BP; Lu S; Dandin MP; Smela E; Abshire PA IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1214-1225. PubMed ID: 31283487 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]