These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 30139073)

  • 1. CLADISTIC ANALYSIS OF PATTERNS OF ENDOTHECIAL THICKENINGS IN THE POALES/RESTIONALES.
    Manning JC; Linder HP
    Am J Bot; 1990 Feb; 77(2):196-210. PubMed ID: 30139073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gondwanan evolution of the grass alliance of families (Poales).
    Bremer K
    Evolution; 2002 Jul; 56(7):1374-87. PubMed ID: 12206239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroplast DNA inversions and the origin of the grass family (Poaceae).
    Doyle JJ; Davis JI; Soreng RJ; Garvin D; Anderson MJ
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7722-6. PubMed ID: 1502190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ENDOTHECIUM IN IRIDACEAE AND ITS SYSTEMATIC IMPLICATIONS.
    Manning JC; Goldblatt P
    Am J Bot; 1990 Apr; 77(4):527-532. PubMed ID: 30139162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes.
    Michelangeli FA; Davis JI; Stevenson DW
    Am J Bot; 2003 Jan; 90(1):93-106. PubMed ID: 21659084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (1->3),(1->4)-{beta}-d-Glucans in the cell walls of the Poales (sensu lato): an immunogold labeling study using a monoclonal antibody.
    Trethewey JA; Campbell LM; Harris PJ
    Am J Bot; 2005 Oct; 92(10):1660-74. PubMed ID: 21646083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of reproductive structures in grasses (Poaceae) inferred by sister-group comparison with their putative closest living relatives, Ecdeiocoleaceae.
    Rudall PJ; Stuppy W; Cunniff J; Kellogg EA; Briggs BG
    Am J Bot; 2005 Sep; 92(9):1432-43. PubMed ID: 21646161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organelle Phylogenomics and Extensive Conflicting Phylogenetic Signals in the Monocot Order Poales.
    Wu H; Yang JB; Liu JX; Li DZ; Ma PF
    Front Plant Sci; 2021; 12():824672. PubMed ID: 35173754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusoid cells in the grass family Poaceae (Poales): a developmental study reveals homologies and suggests new insights into their functional role in young leaves.
    Leandro TD; Rodrigues TM; Clark LG; Scatena VL
    Ann Bot; 2018 Nov; 122(5):833-848. PubMed ID: 30395186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The First Complete Plastid Genome from Joinvilleaceae (J. ascendens; Poales) Shows Unique and Unpredicted Rearrangements.
    Wysocki WP; Burke SV; Swingley WD; Duvall MR
    PLoS One; 2016; 11(9):e0163218. PubMed ID: 27658044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pervasive survival of expressed mitochondrial rps14 pseudogenes in grasses and their relatives for 80 million years following three functional transfers to the nucleus.
    Ong HC; Palmer JD
    BMC Evol Biol; 2006 Jul; 6():55. PubMed ID: 16842621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anther and pollen development in some species of Poaceae (Poales).
    Nakamura AT; Longhi-Wagner HM; Scatena VL
    Braz J Biol; 2010 May; 70(2):351-60. PubMed ID: 20552147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology and development of the gynoecium in Centrolepidaceae: The most remarkable range of variation in Poales.
    Sokoloff DD; Remizowa MV; Linder HP; Rudall PJ
    Am J Bot; 2009 Nov; 96(11):1925-40. PubMed ID: 21622313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two centuries from species discovery to diagnostic characters: molecular and morphological evidence for narrower species limits in the widespread SW Australian
    Fomichev CI; Macfarlane TD; Valiejo-Roman CM; Samigullin TH; Degtjareva GV; Briggs BG; Sokoloff DD
    PeerJ; 2021; 9():e10935. PubMed ID: 33732546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Migration of endpoints of two genes relative to boundaries between regions of the plastid genome in the grass family (Poaceae).
    Davis JI; Soreng RJ
    Am J Bot; 2010 May; 97(5):874-92. PubMed ID: 21622452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cystathionine-β-synthase domain-containing protein, CBSX2, regulates endothecial secondary cell wall thickening in anther development.
    Jung KW; Kim YY; Yoo KS; Ok SH; Cui MH; Jeong BC; Yoo SD; Jeung JU; Shin JS
    Plant Cell Physiol; 2013 Feb; 54(2):195-208. PubMed ID: 23220733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular phylogenetics of Poaceae: an expanded analysis of rbcL sequence data.
    Duvall MR; Morton BR
    Mol Phylogenet Evol; 1996 Apr; 5(2):352-8. PubMed ID: 8728393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyphyly and convergent morphological evolution in Commelinales and Commelinidae: evidence from rbcL sequence data.
    Givnish TJ; Evans TM; Pires JC; Sytsma KJ
    Mol Phylogenet Evol; 1999 Aug; 12(3):360-85. PubMed ID: 10413629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Floral anatomy of Paepalanthoideae (Eriocaulaceae, Poales) and their Nectariferous structures.
    Rosa MM; Scatena VL
    Ann Bot; 2007 Jan; 99(1):131-9. PubMed ID: 17085472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The matK gene: sequence variation and application in plant systematics.
    Hilu K; Liang H
    Am J Bot; 1997 Jun; 84(6):830. PubMed ID: 21708635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.