These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 30139142)

  • 21. Floral anatomy and vegetative development in Ceratophyllum demersum: a morphological picture of an "unsolved" plant.
    Iwamoto A; Izumidate R; Ronse De Craene LP
    Am J Bot; 2015 Oct; 102(10):1578-89. PubMed ID: 26419811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early flower development in Arabidopsis.
    Smyth DR; Bowman JL; Meyerowitz EM
    Plant Cell; 1990 Aug; 2(8):755-67. PubMed ID: 2152125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wrinkled petals and stamens 1, is required for the morphogenesis of petals and stamens in Lotus japonicus.
    Chen JH; Pang JL; Wang LL; Luo YH; Li X; Cao XL; Lin K; Ma W; Hu XH; Luo D
    Cell Res; 2006 May; 16(5):499-506. PubMed ID: 16699545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The development of pistillate and perfect florets in Xeranthemum squarrosum (Asteraceae).
    Dadpour MR; Naghiloo S; Neycharan SF
    Plant Biol (Stuttg); 2012 Jan; 14(1):234-43. PubMed ID: 21974817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Floral ontogeny of Ruteae (Rutaceae) and its systematic implications.
    Wei L; Wang YZ; Li ZY
    Plant Biol (Stuttg); 2012 Jan; 14(1):190-7. PubMed ID: 21972951
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two ancestral APETALA3 homologs from the basal angiosperm Magnolia wufengensis (Magnoliaceae) can affect flower development of Arabidopsis.
    Jing D; Liu Z; Zhang B; Ma J; Han Y; Chen F
    Gene; 2014 Mar; 537(1):100-7. PubMed ID: 24334124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Floral ontogeny in Scirpus, Eriophorum and Dulichium (Cyperaceae), with special reference to the perianth.
    Vrijdaghs A; Caris P; Goetghebeur P; Smets E
    Ann Bot; 2005 Jun; 95(7):1199-209. PubMed ID: 15788436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the 'orchid code'.
    Mondragón-Palomino M; Theissen G
    Plant J; 2011 Jun; 66(6):1008-19. PubMed ID: 21435045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of SpAPETALA3 and SpPISTILLATA, B class floral identity genes in Spinacia oleracea, and their relationship to sexual dimorphism.
    Pfent C; Pobursky KJ; Sather DN; Golenberg EM
    Dev Genes Evol; 2005 Mar; 215(3):132-42. PubMed ID: 15660251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation of HAG1 and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L.
    Li QZ; Li XG; Bai SN; Lu WL; Zhang XS
    Planta; 2002 Aug; 215(4):533-40. PubMed ID: 12172834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flower development in pisum sativum: from the war of the whorls to the battle of the common primordia.
    Ferrandiz C; Navarro C; Gomez MD; Canas LA; Beltran JP
    Dev Genet; 1999 Sep; 25(3):280-90. PubMed ID: 10528268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calceolariaceae: floral development and systematic implications.
    Mayr EM; Weber A
    Am J Bot; 2006 Mar; 93(3):327-43. PubMed ID: 21646194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai.
    Ren Y; Yang J; Lu B; Jiang Y; Chen H; Hong Y; Wu B; Miao Y
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28885552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Homology and functions of inner staminodes in
    Li B; Xu F
    AoB Plants; 2020 Dec; 12(6):plaa057. PubMed ID: 33343856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Floral development and morphology of Vochysiaceae. II. The position of the single fertile stamen.
    Litt A; Stevenson DW
    Am J Bot; 2003 Nov; 90(11):1548-59. PubMed ID: 21653330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perianth evolution in the sandalwood order Santalales.
    Wanntorp L; De Craene LP
    Am J Bot; 2009 Jul; 96(7):1361-71. PubMed ID: 21628284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis.
    Benedito VA; Visser PB; van Tuyl JM; Angenent GC; de Vries SC; Krens FA
    J Exp Bot; 2004 Jun; 55(401):1391-9. PubMed ID: 15155783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrated mRNA and microRNA transcriptome variations in the multi-tepal mutant provide insights into the floral patterning of the orchid Cymbidium goeringii.
    Yang F; Zhu G; Wang Z; Liu H; Xu Q; Huang D; Zhao C
    BMC Genomics; 2017 May; 18(1):367. PubMed ID: 28490318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism.
    Sather DN; Jovanovic M; Golenberg EM
    BMC Plant Biol; 2010 Mar; 10():46. PubMed ID: 20226063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Floral vasculature and its variation for carpellary supply in
    Poli LP; Temponi LG; Coan AI
    PeerJ; 2017; 5():e2929. PubMed ID: 28149697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.