BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 30139398)

  • 1. Review: The compositional variation of the rumen microbiome and its effect on host performance and methane emission.
    Mizrahi I; Jami E
    Animal; 2018 Dec; 12(s2):s220-s232. PubMed ID: 30139398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heritable Bovine Rumen Bacteria Are Phylogenetically Related and Correlated with the Cow's Capacity To Harvest Energy from Its Feed.
    Sasson G; Kruger Ben-Shabat S; Seroussi E; Doron-Faigenboim A; Shterzer N; Yaacoby S; Berg Miller ME; White BA; Halperin E; Mizrahi I
    mBio; 2017 Aug; 8(4):. PubMed ID: 28811339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review: Ruminal microbiome and microbial metabolome: effects of diet and ruminant host.
    Newbold CJ; Ramos-Morales E
    Animal; 2020 Mar; 14(S1):s78-s86. PubMed ID: 32024572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rumen microbiome: balancing food security and environmental impacts.
    Mizrahi I; Wallace RJ; Moraïs S
    Nat Rev Microbiol; 2021 Sep; 19(9):553-566. PubMed ID: 33981031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rumen microbial (meta)genomics and its application to ruminant production.
    Morgavi DP; Kelly WJ; Janssen PH; Attwood GT
    Animal; 2013 Mar; 7 Suppl 1():184-201. PubMed ID: 23031271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invited review: Application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants.
    Gruninger RJ; Ribeiro GO; Cameron A; McAllister TA
    Animal; 2019 Sep; 13(9):1843-1854. PubMed ID: 31062682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range.
    Henderson G; Cox F; Ganesh S; Jonker A; Young W; ; Janssen PH
    Sci Rep; 2015 Oct; 5():14567. PubMed ID: 26449758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants.
    Shabat SK; Sasson G; Doron-Faigenboim A; Durman T; Yaacoby S; Berg Miller ME; White BA; Shterzer N; Mizrahi I
    ISME J; 2016 Dec; 10(12):2958-2972. PubMed ID: 27152936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The early impact of genomics and metagenomics on ruminal microbiology.
    Denman SE; McSweeney CS
    Annu Rev Anim Biosci; 2015; 3():447-65. PubMed ID: 25387109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis.
    McAllister TA; Meale SJ; Valle E; Guan LL; Zhou M; Kelly WJ; Henderson G; Attwood GT; Janssen PH
    J Anim Sci; 2015 Apr; 93(4):1431-49. PubMed ID: 26020166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytogenic Additives Can Modulate Rumen Microbiome to Mediate Fermentation Kinetics and Methanogenesis Through Exploiting Diet-Microbe Interaction.
    Hassan FU; Arshad MA; Ebeid HM; Rehman MS; Khan MS; Shahid S; Yang C
    Front Vet Sci; 2020; 7():575801. PubMed ID: 33263013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RUMINANT NUTRITION SYMPOSIUM: How to use data on the rumen microbiome to improve our understanding of ruminant nutrition.
    Firkins JL; Yu Z
    J Anim Sci; 2015 Apr; 93(4):1450-70. PubMed ID: 26020167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Holistic Assessment of Rumen Microbiome Dynamics through Quantitative Metatranscriptomics Reveals Multifunctional Redundancy during Key Steps of Anaerobic Feed Degradation.
    Söllinger A; Tveit AT; Poulsen M; Noel SJ; Bengtsson M; Bernhardt J; Frydendahl Hellwing AL; Lund P; Riedel K; Schleper C; Højberg O; Urich T
    mSystems; 2018; 3(4):. PubMed ID: 30116788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Methanogens and manipulation of methane production in the rumen].
    Guo YQ; Hu WL; Liu JX
    Wei Sheng Wu Xue Bao; 2005 Feb; 45(1):145-8. PubMed ID: 15847184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rumen metaproteomics: Closer to linking rumen microbial function to animal productivity traits.
    Andersen TO; Kunath BJ; Hagen LH; Arntzen MØ; Pope PB
    Methods; 2021 Feb; 186():42-51. PubMed ID: 32758682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symposium review: Mining metagenomic and metatranscriptomic data for clues about microbial metabolic functions in ruminants.
    Li F; Neves ALA; Ghoshal B; Guan LL
    J Dairy Sci; 2018 Jun; 101(6):5605-5618. PubMed ID: 29274958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-abundance analysis reveals hidden players associated with high methane yield phenotype in sheep rumen microbiome.
    Ghanbari Maman L; Palizban F; Fallah Atanaki F; Elmi Ghiasi N; Ariaeenejad S; Ghaffari MR; Hosseini Salekdeh G; Kavousi K
    Sci Rep; 2020 Mar; 10(1):4995. PubMed ID: 32193482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency.
    Matthews C; Crispie F; Lewis E; Reid M; O'Toole PW; Cotter PD
    Gut Microbes; 2019; 10(2):115-132. PubMed ID: 30207838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation.
    Lan W; Yang C
    Sci Total Environ; 2019 Mar; 654():1270-1283. PubMed ID: 30841400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Road Not Taken: The Rumen Microbiome, Functional Groups, and Community States.
    Moraïs S; Mizrahi I
    Trends Microbiol; 2019 Jun; 27(6):538-549. PubMed ID: 30679075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.