BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3013982)

  • 1. Biosynthesis of superoxide dismutase in Saccharomyces cerevisiae: effects of paraquat and copper.
    Lee FJ; Hassan HM
    J Free Radic Biol Med; 1985; 1(4):319-25. PubMed ID: 3013982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a novel role of copper-zinc superoxide dismutase in zinc metabolism.
    Wei JP; Srinivasan C; Han H; Valentine JS; Gralla EB
    J Biol Chem; 2001 Nov; 276(48):44798-803. PubMed ID: 11581253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant activity of L-ascorbic acid in wild-type and superoxide dismutase deficient strains of Saccharomyces cerevisiae.
    Saffi J; Sonego L; Varela QD; Salvador M
    Redox Rep; 2006; 11(4):179-84. PubMed ID: 16984741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alteration of endogenous glutathione peroxidase, manganese superoxide dismutase, and glutathione transferase activity in cells transfected with a copper-zinc superoxide dismutase expression vector. Explanation for variations in paraquat resistance.
    Kelner MJ; Bagnell R
    J Biol Chem; 1990 Jul; 265(19):10872-5. PubMed ID: 2358446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon tetrachloride toxicity on Escherichia coli exacerbated by superoxide.
    Yamamoto H; Nagano T; Hirobe M
    J Biol Chem; 1988 Sep; 263(25):12224-7. PubMed ID: 2842324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prokaryotic iron superoxide dismutase replaces cytosolic copper, zinc superoxide dismutase in protecting yeast cells against oxidative stress.
    Agius DR; Bannister WH; Balzan R
    Biochem Mol Biol Int; 1998 Jan; 44(1):41-9. PubMed ID: 9503146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paraquat and Escherichia coli. Mechanism of production of extracellular superoxide radical.
    Hassan HM; Fridovich I
    J Biol Chem; 1979 Nov; 254(21):10846-52. PubMed ID: 227855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of superoxide dismutases in Photobacterium leiognathi.
    Kobayashi H; Tonokawa H; Fukasawa S; Yamakura F
    Free Radic Res Commun; 1991; 12-13 Pt 1():437-41. PubMed ID: 2071047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition metals potentiate paraquat toxicity.
    Kohen R; Chevion M
    Free Radic Res Commun; 1985; 1(2):79-88. PubMed ID: 3916875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of copper and cadmium on growth, superoxide dismutase and catalase activities in different yeast strains.
    Romandini P; Tallandini L; Beltramini M; Salvato B; Manzano M; de Bertoldi M; Rocco GP
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 Oct; 103(2):255-62. PubMed ID: 1360381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.
    Ribeiro TP; Fernandes C; Melo KV; Ferreira SS; Lessa JA; Franco RW; Schenk G; Pereira MD; Horn A
    Free Radic Biol Med; 2015 Mar; 80():67-76. PubMed ID: 25511255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase.
    Wong PC; Waggoner D; Subramaniam JR; Tessarollo L; Bartnikas TB; Culotta VC; Price DL; Rothstein J; Gitlin JD
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2886-91. PubMed ID: 10694572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free radical reactions and the inhibitory and lethal actions of high-pressure gases.
    Thom SR; Marquis RE
    Undersea Biomed Res; 1987 Nov; 14(6):485-501. PubMed ID: 2825395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacogenetics of cyclic guanylate, antioxidants, and antioxidant enzymes in Saccharomyces.
    Munkres KD
    Free Radic Biol Med; 1990; 9(1):39-50. PubMed ID: 2170245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function and stationary-phase induction of periplasmic copper-zinc superoxide dismutase and catalase/peroxidase in Caulobacter crescentus.
    Schnell S; Steinman HM
    J Bacteriol; 1995 Oct; 177(20):5924-9. PubMed ID: 7592345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of manganese superoxide dismutase in Saccharomyces cerevisiae. The role of respiratory chain activity.
    Westerbeek-Marres CA; Moore MM; Autor AP
    Eur J Biochem; 1988 Jul; 174(4):611-20. PubMed ID: 2839336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallation state of human manganese superoxide dismutase expressed in Saccharomyces cerevisiae.
    Whittaker MM; Whittaker JW
    Arch Biochem Biophys; 2012 Jul; 523(2):191-7. PubMed ID: 22561997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. alpha, beta-Dihydroxyisovalerate dehydratase. A superoxide-sensitive enzyme.
    Kuo CF; Mashino T; Fridovich I
    J Biol Chem; 1987 Apr; 262(10):4724-7. PubMed ID: 3031031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exacerbation of superoxide radical formation by paraquat.
    Hassan HM
    Methods Enzymol; 1984; 105():523-32. PubMed ID: 6328203
    [No Abstract]   [Full Text] [Related]  

  • 20. Transfection with human copper-zinc superoxide dismutase induces bidirectional alterations in other antioxidant enzymes, proteins, growth factor response, and paraquat resistance.
    Kelner MJ; Bagnell R; Montoya M; Estes L; Uglik SF; Cerutti P
    Free Radic Biol Med; 1995 Mar; 18(3):497-506. PubMed ID: 9101240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.