These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30140020)

  • 1. Transcriptomic Analysis of Aedes aegypti in Response to Mosquitocidal Bacillus thuringiensis LLP29 Toxin.
    Batool K; Alam I; Wu S; Liu W; Zhao G; Chen M; Wang J; Xu J; Huang T; Pan X; Yu X; Guan X; Xu L; Zhang L
    Sci Rep; 2018 Aug; 8(1):12650. PubMed ID: 30140020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional cellular responses in midgut tissue of Aedes aegypti larvae following intoxication with Cry11Aa toxin from Bacillus thuringiensis.
    Canton PE; Cancino-Rodezno A; Gill SS; Soberón M; Bravo A
    BMC Genomics; 2015 Dec; 16():1042. PubMed ID: 26645277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis of differentially expressed genes involved in innate immunity following Bacillus thuringiensis challenge in Bombyx mori larvae.
    Wu G; Yi Y
    Mol Immunol; 2018 Nov; 103():220-228. PubMed ID: 30316186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo characterization of venom apparatus transcriptome of Pardosa pseudoannulata and analysis of its gene expression in response to Bt protein.
    Li R; Yan Z; Wang J; Song Q; Wang Z
    BMC Biotechnol; 2017 Nov; 17(1):73. PubMed ID: 29115956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning, expression and activity of ATP-binding protein in Bacillus thuringiensis toxicity modulation against Aedes aegypti.
    Zhao GH; Liu JN; Hu XH; Batool K; Jin L; Wu CX; Wu J; Chen H; Jiang XY; Yang ZH; Huang XH; Huang EJ; Yu XQ; Guan X; Zhang LL
    Parasit Vectors; 2019 Jun; 12(1):319. PubMed ID: 31238963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The midgut transcriptome of Aedes aegypti fed with saline or protein meals containing chikungunya virus reveals genes potentially involved in viral midgut escape.
    Dong S; Behura SK; Franz AWE
    BMC Genomics; 2017 May; 18(1):382. PubMed ID: 28506207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transcriptome of the mosquito Aedes fluviatilis (Diptera: Culicidae), and transcriptional changes associated with its native Wolbachia infection.
    Caragata EP; Pais FS; Baton LA; Silva JB; Sorgine MH; Moreira LA
    BMC Genomics; 2017 Jan; 18(1):6. PubMed ID: 28049478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel mosquitocidal Bacillus thuringiensis strain LLP29 isolated from the phylloplane of Magnolia denudata.
    Zhang L; Huang E; Lin J; Gelbic I; Zhang Q; Guan Y; Huang T; Guan X
    Microbiol Res; 2010 Feb; 165(2):133-41. PubMed ID: 19577911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic analysis of koi (Cyprinus carpio) spleen tissue upon cyprinid herpesvirus 3 (CyHV3) infection using next generation sequencing.
    Lee X; Yi Y; Weng S; Zeng J; Zhang H; He J; Dong C
    Fish Shellfish Immunol; 2016 Feb; 49():213-24. PubMed ID: 26690666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription Profiling for Defensins of Aedes aegypti (Diptera: Culicidae) During Development and in Response to Infection With Chikungunya and Zika Viruses.
    Zhao L; Alto BW; Smartt CT; Shin D
    J Med Entomol; 2018 Jan; 55(1):78-89. PubMed ID: 28968775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkaline phosphatases are involved in the response of Aedes aegypti larvae to intoxication with Bacillus thuringiensis subsp. israelensis Cry toxins.
    Stalinski R; Laporte F; Després L; Tetreau G
    Environ Microbiol; 2016 Mar; 18(3):1022-36. PubMed ID: 26663676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression patterns and sequence polymorphisms associated with mosquito resistance to Bacillus thuringiensis israelensis toxins.
    Després L; Stalinski R; Tetreau G; Paris M; Bonin A; Navratil V; Reynaud S; David JP
    BMC Genomics; 2014 Oct; 15(1):926. PubMed ID: 25341495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole genome sequence analysis of the mosquitocidal Bacillus thuringiensis LLP29.
    Ma W; Chen H; Jiang X; Wang J; Gelbič I; Guan X; Zhang L
    Arch Microbiol; 2020 Sep; 202(7):1693-1700. PubMed ID: 32296870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genetic architecture of a complex trait: Resistance to multiple toxins produced by Bacillus thuringiensis israelensis in the dengue and yellow fever vector, the mosquito Aedes aegypti.
    Bonin A; Paris M; Frérot H; Bianco E; Tetreau G; Després L
    Infect Genet Evol; 2015 Oct; 35():204-13. PubMed ID: 26238211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Larval midgut modifications associated with Bti resistance in the yellow fever mosquito using proteomic and transcriptomic approaches.
    Tetreau G; Bayyareddy K; Jones CM; Stalinski R; Riaz MA; Paris M; David JP; Adang MJ; Després L
    BMC Genomics; 2012 Jun; 13():248. PubMed ID: 22703117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome Profiling and Genetic Study Reveal Amplified Carboxylesterase Genes Implicated in Temephos Resistance, in the Asian Tiger Mosquito Aedes albopictus.
    Grigoraki L; Lagnel J; Kioulos I; Kampouraki A; Morou E; Labbé P; Weill M; Vontas J
    PLoS Negl Trop Dis; 2015 May; 9(5):e0003771. PubMed ID: 26000638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influence of biotic factors on the efficacy of Bacillus thuringiensis var. Israelensis against Aedes aegypti (Diptera: Culicidae)].
    Corbillón Porraspita CO; González Rizo A; Menéndez Díaz Z; Companioni Ibañez A; Bruzón Aguila RY; Díaz Pérez M; Gato Armas R
    Rev Cubana Med Trop; 2012; 64(3):235-43. PubMed ID: 23424800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C-Type Lectin-20 Interacts with ALP1 Receptor to Reduce Cry Toxicity in
    Batool K; Alam I; Zhao G; Wang J; Xu J; Yu X; Huang E; Guan X; Zhang L
    Toxins (Basel); 2018 Sep; 10(10):. PubMed ID: 30257487
    [No Abstract]   [Full Text] [Related]  

  • 19. Functional expression in insect cells of glycosylphosphatidylinositol-linked alkaline phosphatase from Aedes aegypti larval midgut: a Bacillus thuringiensis Cry4Ba toxin receptor.
    Dechklar M; Tiewsiri K; Angsuthanasombat C; Pootanakit K
    Insect Biochem Mol Biol; 2011 Mar; 41(3):159-66. PubMed ID: 21146607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Susceptibility of Aedes aegypti (L.) strains from Havana to a Bacillus thuringiensis var. israelensis].
    Menéndez Díaz Z; Rodríguez Rodríguez J; Gato Armas R; Companioni Ibañez A; Díaz Pérez M; Bruzón Aguila RY
    Rev Cubana Med Trop; 2012; 64(3):324-9. PubMed ID: 23424808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.