These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 30140090)
1. Development of Gait Rehabilitation System Capable of Assisting Pelvic Movement of Normal Walking. Jung C; Jung S; Chun MH; Lee JM; Park S; Kim SJ Acta Med Okayama; 2018 Aug; 72(4):407-417. PubMed ID: 30140090 [TBL] [Abstract][Full Text] [Related]
2. The effect of pelvic movements of a gait training system for stroke patients: a single blind, randomized, parallel study. Son C; Lee A; Lee J; Kim D; Kim SJ; Chun MH; Choi J J Neuroeng Rehabil; 2021 Dec; 18(1):185. PubMed ID: 34961541 [TBL] [Abstract][Full Text] [Related]
3. A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses. Olenšek A; Zadravec M; Matjačić Z J Neuroeng Rehabil; 2016 Jun; 13(1):55. PubMed ID: 27287551 [TBL] [Abstract][Full Text] [Related]
4. Development of a Prototype Overground Pelvic Obliquity Support Robot for Rehabilitation of Hemiplegia Gait. Hwang S; Lee S; Shin D; Baek I; Ham S; Kim W Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408083 [TBL] [Abstract][Full Text] [Related]
5. Effect of Pelvic Movement on Healthy Subjects During Gait Training Using a Gait Rehabilitation System. Son C; Moon H; Kim D; Chun MH; Kim S; Choi J Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2475-2478. PubMed ID: 30440909 [TBL] [Abstract][Full Text] [Related]
6. Restriction of pelvic lateral and rotational motions alters lower limb kinematics and muscle activation pattern during over-ground walking. Mun KR; Guo Z; Yu H Med Biol Eng Comput; 2016 Nov; 54(11):1621-1629. PubMed ID: 26830107 [TBL] [Abstract][Full Text] [Related]
7. On the Adaptation of Pelvic Motion by Applying 3-dimensional Guidance Forces Using TPAD. Kang J; Vashista V; Agrawal SK IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1558-1567. PubMed ID: 28287978 [TBL] [Abstract][Full Text] [Related]
8. Force Analysis and Evaluation of a Pelvic Support Walking Robot with Joint Compliance. Ji J; Guo S; Xi FJ J Healthc Eng; 2018; 2018():9235023. PubMed ID: 30622691 [TBL] [Abstract][Full Text] [Related]
9. Lateral balance control for robotic gait training. Koopman B; Meuleman JH; van Asseldonk EH; van der Kooij H IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650363. PubMed ID: 24187182 [TBL] [Abstract][Full Text] [Related]
10. Robot-assisted walking with the Lokomat: the influence of different levels of guidance force on thorax and pelvis kinematics. Swinnen E; Baeyens JP; Knaepen K; Michielsen M; Clijsen R; Beckwée D; Kerckhofs E Clin Biomech (Bristol); 2015 Mar; 30(3):254-9. PubMed ID: 25662678 [TBL] [Abstract][Full Text] [Related]
11. Clustering trunk movements of children and adolescents with neurological gait disorders undergoing robot-assisted gait therapy: the functional ability determines if actuated pelvis movements are clinically useful. van Dellen F; Aurich-Schuler T; Hesse N; Labruyère R J Neuroeng Rehabil; 2023 Jun; 20(1):71. PubMed ID: 37270537 [TBL] [Abstract][Full Text] [Related]
12. Validity of quantitative assessment of posterior pelvic tilt and contralateral vaulting in hemiplegia using 3D treadmill gait analysis. Tanikawa H; Inagaki K; Ohtsuka K; Matsuda F; Mukaino M; Yamada J; Kanada Y; Kagaya H; Saitoh E Top Stroke Rehabil; 2021 Mar; 28(2):96-103. PubMed ID: 32588758 [TBL] [Abstract][Full Text] [Related]
13. Changes of pelvis control with subacute stroke: A comparison of body-weight- support treadmill training coupled virtual reality system and over-ground training. Mao Y; Chen P; Li L; Li L; Huang D Technol Health Care; 2015; 23 Suppl 2():S355-64. PubMed ID: 26410502 [TBL] [Abstract][Full Text] [Related]
14. Pelvic step: the contribution of horizontal pelvis rotation to step length in young healthy adults walking on a treadmill. Liang BW; Wu WH; Meijer OG; Lin JH; Lv GR; Lin XC; Prins MR; Hu H; van Dieën JH; Bruijn SM Gait Posture; 2014 Jan; 39(1):105-10. PubMed ID: 23830524 [TBL] [Abstract][Full Text] [Related]
15. Comparison of pelvic complex kinematics during treadmill and overground walking. Chockalingam N; Chatterley F; Healy AC; Greenhalgh A; Branthwaite HR Arch Phys Med Rehabil; 2012 Dec; 93(12):2302-8. PubMed ID: 22365476 [TBL] [Abstract][Full Text] [Related]
16. Walking more slowly than with normal velocity: The influence on trunk and pelvis kinematics in young and older healthy persons. Swinnen E; Baeyens JP; Pintens S; Buyl R; Goossens M; Meeusen R; Kerckhofs E Clin Biomech (Bristol); 2013 Aug; 28(7):800-6. PubMed ID: 23856336 [TBL] [Abstract][Full Text] [Related]
17. A review in gait rehabilitation devices and applied control techniques. Chaparro-Cárdenas SL; Lozano-Guzmán AA; Ramirez-Bautista JA; Hernández-Zavala A Disabil Rehabil Assist Technol; 2018 Nov; 13(8):819-834. PubMed ID: 29577779 [TBL] [Abstract][Full Text] [Related]
18. Effects of Timed Frontal Plane Pelvic Moments During Overground Walking With a Mobile TPAD System. Stramel DM; Prado A; Roy SH; Kim H; Agrawal SK IEEE Trans Neural Syst Rehabil Eng; 2023; 31():48-57. PubMed ID: 36264728 [TBL] [Abstract][Full Text] [Related]
19. Research on a New Rehabilitation Robot for Balance Disorders. Wu J; Liu Y; Zhao J; Jia Z IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800 [TBL] [Abstract][Full Text] [Related]
20. Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results. Molteni F; Gasperini G; Gaffuri M; Colombo M; Giovanzana C; Lorenzon C; Farina N; Cannaviello G; Scarano S; Proserpio D; Liberali D; Guanziroli E Eur J Phys Rehabil Med; 2017 Oct; 53(5):676-684. PubMed ID: 28118698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]