These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30140193)

  • 1. Intracellular Pathways Involved in Bone Regeneration Triggered by Recombinant Silk-silica Chimeras.
    Martín-Moldes Z; Ebrahimi D; Plowright R; Dinjaski N; Perry CC; Buehler MJ; Kaplan DL
    Adv Funct Mater; 2018 Jul; 28(27):. PubMed ID: 30140193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the silica nanoparticle size on the osteoinduction of biomineralized silk-silica nanocomposites.
    Martín-Moldes Z; López Barreiro D; Buehler MJ; Kaplan DL
    Acta Biomater; 2021 Jan; 120():203-212. PubMed ID: 33160114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoinductive recombinant silk fusion proteins for bone regeneration.
    Dinjaski N; Plowright R; Zhou S; Belton DJ; Perry CC; Kaplan DL
    Acta Biomater; 2017 Feb; 49():127-139. PubMed ID: 27940162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated Modeling and Experimental Approaches to Control Silica Modification of Design Silk-Based Biomaterials.
    Dinjaski N; Ebrahimi D; Ling S; Shah S; Buehler MJ; Kaplan DL
    ACS Biomater Sci Eng; 2017 Nov; 3(11):2877-2888. PubMed ID: 33418709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration.
    Mieszawska AJ; Nadkarni LD; Perry CC; Kaplan DL
    Chem Mater; 2010 Oct; 22(20):5780-5785. PubMed ID: 20976116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of silk-silica fusion protein design on silica condensation
    Plowright R; Dinjaski N; Zhou S; Belton DJ; Kaplan DL; Perry CC
    RSC Adv; 2016 Jan; 6(26):21776-21788. PubMed ID: 26989487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoinductive silk-silica composite biomaterials for bone regeneration.
    Mieszawska AJ; Fourligas N; Georgakoudi I; Ouhib NM; Belton DJ; Perry CC; Kaplan DL
    Biomaterials; 2010 Dec; 31(34):8902-10. PubMed ID: 20817293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides.
    Zhou S; Huang W; Belton DJ; Simmons LO; Perry CC; Wang X; Kaplan DL
    Acta Biomater; 2015 Mar; 15():173-80. PubMed ID: 25462851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired silicification of silica-binding peptide-silk protein chimeras: comparison of chemically and genetically produced proteins.
    Canabady-Rochelle LL; Belton DJ; Deschaume O; Currie HA; Kaplan DL; Perry CC
    Biomacromolecules; 2012 Mar; 13(3):683-90. PubMed ID: 22229696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior.
    An B; DesRochers TM; Qin G; Xia X; Thiagarajan G; Brodsky B; Kaplan DL
    Biomaterials; 2013 Jan; 34(2):402-12. PubMed ID: 23088839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response.
    Calabrese R; Raia N; Huang W; Ghezzi CE; Simon M; Staii C; Weiss AS; Kaplan DL
    J Tissue Eng Regen Med; 2017 Sep; 11(9):2549-2564. PubMed ID: 27061681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Functionalized Silk Fibroin Films as a Platform To Guide Neuron-like Differentiation of Human Mesenchymal Stem Cells.
    Manchineella S; Thrivikraman G; Basu B; Govindaraju T
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):22849-59. PubMed ID: 27518901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of different mineralization processes on in vitro and in vivo bone regeneration and osteoblast-macrophage cross-talk in co-culture system using dual growth factor mediated non-mulberry silk fibroin grafted poly (Є-caprolactone) nanofibrous scaffold.
    Bhattacharjee P; Maiti TK; Bhattacharya D; Nandi SK
    Colloids Surf B Biointerfaces; 2017 Aug; 156():270-281. PubMed ID: 28544959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying osteogenic cell degradation of silk biomaterials.
    Sengupta S; Park SH; Seok GE; Patel A; Numata K; Lu CL; Kaplan DL
    Biomacromolecules; 2010 Dec; 11(12):3592-9. PubMed ID: 21105641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryptic ligand on collagen matrix unveiled by MMP13 accelerates bone tissue regeneration via MMP13/Integrin α3/RUNX2 feedback loop.
    Arai Y; Choi B; Kim BJ; Park S; Park H; Moon JJ; Lee SH
    Acta Biomater; 2021 Apr; 125():219-230. PubMed ID: 33677160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis.
    Hamidouche Z; Fromigué O; Ringe J; Häupl T; Vaudin P; Pagès JC; Srouji S; Livne E; Marie PJ
    Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18587-91. PubMed ID: 19843692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic Integration of Experimental and Simulation Approaches for the de Novo Design of Silk-Based Materials.
    Huang W; Ebrahimi D; Dinjaski N; Tarakanova A; Buehler MJ; Wong JY; Kaplan DL
    Acc Chem Res; 2017 Apr; 50(4):866-876. PubMed ID: 28191922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration.
    Maleki H; Shahbazi MA; Montes S; Hosseini SH; Eskandari MR; Zaunschirm S; Verwanger T; Mathur S; Milow B; Krammer B; Hüsing N
    ACS Appl Mater Interfaces; 2019 May; 11(19):17256-17269. PubMed ID: 31013056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spider Silk Fusion Proteins for Controlled Collagen Binding and Biomineralization.
    Neubauer VJ; Scheibel T
    ACS Biomater Sci Eng; 2020 Oct; 6(10):5599-5608. PubMed ID: 33320578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular Delivery of Recombinant RUNX2 Facilitated by Cell-Penetrating Protein for the Osteogenic Differentiation of hMSCs.
    Lee H; Kim SHL; Yoon H; Ryu J; Park HH; Hwang NS; Park TH
    ACS Biomater Sci Eng; 2020 Sep; 6(9):5202-5214. PubMed ID: 33455270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.