These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 30140608)

  • 21. Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks.
    Qi Dou ; Hao Chen ; Lequan Yu ; Lei Zhao ; Jing Qin ; Defeng Wang ; Mok VC; Lin Shi ; Pheng-Ann Heng
    IEEE Trans Med Imaging; 2016 May; 35(5):1182-1195. PubMed ID: 26886975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DEEPMIR: a deep neural network for differential detection of cerebral microbleeds and iron deposits in MRI.
    Rashid T; Abdulkadir A; Nasrallah IM; Ware JB; Liu H; Spincemaille P; Romero JR; Bryan RN; Heckbert SR; Habes M
    Sci Rep; 2021 Jul; 11(1):14124. PubMed ID: 34238951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic detection of cerebral microbleeds using susceptibility weighted imaging and artificial intelligence.
    Luo Y; Gao K; Fawaz M; Wu B; Zhong Y; Zhou Y; Haacke EM; Dai Y; Liu S
    Quant Imaging Med Surg; 2024 Mar; 14(3):2640-2654. PubMed ID: 38545040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fully Automated Segmentation Algorithm for Perihematomal Edema Volumetry After Spontaneous Intracerebral Hemorrhage.
    Ironside N; Chen CJ; Mutasa S; Sim JL; Ding D; Marfatiah S; Roh D; Mukherjee S; Johnston KC; Southerland AM; Mayer SA; Lignelli A; Connolly ES
    Stroke; 2020 Mar; 51(3):815-823. PubMed ID: 32078476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Semiautomated detection of cerebral microbleeds in magnetic resonance images.
    Barnes SR; Haacke EM; Ayaz M; Boikov AS; Kirsch W; Kido D
    Magn Reson Imaging; 2011 Jul; 29(6):844-52. PubMed ID: 21571479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated detection of cerebral microbleeds on MR images using knowledge distillation framework.
    Sundaresan V; Arthofer C; Zamboni G; Murchison AG; Dineen RA; Rothwell PM; Auer DP; Wang C; Miller KL; Tendler BC; Alfaro-Almagro F; Sotiropoulos SN; Sprigg N; Griffanti L; Jenkinson M
    Front Neuroinform; 2023; 17():1204186. PubMed ID: 37492242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative study of algorithms for synthetic CT generation from MRI: Consequences for MRI-guided radiation planning in the pelvic region.
    Arabi H; Dowling JA; Burgos N; Han X; Greer PB; Koutsouvelis N; Zaidi H
    Med Phys; 2018 Nov; 45(11):5218-5233. PubMed ID: 30216462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.
    Meng Q; Kitasaka T; Nimura Y; Oda M; Ueno J; Mori K
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):245-261. PubMed ID: 27796791
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of detection sensitivity for cerebral microbleeds using susceptibility-weighted imaging.
    Buch S; Cheng YN; Hu J; Liu S; Beaver J; Rajagovindan R; Haacke EM
    NMR Biomed; 2017 Apr; 30(4):. PubMed ID: 27206271
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated classification of benign and malignant lesions in
    Perk T; Bradshaw T; Chen S; Im HJ; Cho S; Perlman S; Liu G; Jeraj R
    Phys Med Biol; 2018 Nov; 63(22):225019. PubMed ID: 30457118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated algorithm for counting microbleeds in patients with familial cerebral cavernous malformations.
    Zou X; Hart BL; Mabray M; Bartlett MR; Bian W; Nelson J; Morrison LA; McCulloch CE; Hess CP; Lupo JM; Kim H
    Neuroradiology; 2017 Jul; 59(7):685-690. PubMed ID: 28534135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated Detection of Candidate Subjects With Cerebral Microbleeds Using Machine Learning.
    Sundaresan V; Arthofer C; Zamboni G; Dineen RA; Rothwell PM; Sotiropoulos SN; Auer DP; Tozer DJ; Markus HS; Miller KL; Dragonu I; Sprigg N; Alfaro-Almagro F; Jenkinson M; Griffanti L
    Front Neuroinform; 2021; 15():777828. PubMed ID: 35126079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques.
    Yu F; Silva Croso G; Kim TS; Song Z; Parker F; Hager GD; Reiter A; Vedula SS; Ali H; Sikder S
    JAMA Netw Open; 2019 Apr; 2(4):e191860. PubMed ID: 30951163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MRI detection of cerebral microbleeds: size matters.
    Haller S; Scheffler M; Salomir R; Herrmann FR; Gold G; Montandon ML; Kövari E
    Neuroradiology; 2019 Oct; 61(10):1209-1213. PubMed ID: 31396662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Risk factors of radiotherapy-induced cerebral microbleeds and serial analysis of their size compared with white matter changes: A 7T MRI study in 113 adult patients with brain tumors.
    Morrison MA; Hess CP; Clarke JL; Butowski N; Chang SM; Molinaro AM; Lupo JM
    J Magn Reson Imaging; 2019 Sep; 50(3):868-877. PubMed ID: 30663150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated detection of cerebral microbleeds on T2*-weighted MRI.
    Chesebro AG; Amarante E; Lao PJ; Meier IB; Mayeux R; Brickman AM
    Sci Rep; 2021 Feb; 11(1):4004. PubMed ID: 33597663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Feasibility of a semi-automated contrast-oriented algorithm for tumor segmentation in retrospectively gated PET images: phantom and clinical validation.
    Carles M; Fechter T; Nemer U; Nanko N; Mix M; Nestle U; Schaefer A
    Phys Med Biol; 2015 Dec; 60(24):9227-51. PubMed ID: 26576926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cerebral microbleeds and cognition in patients with symptomatic small vessel disease.
    Patel B; Lawrence AJ; Chung AW; Rich P; Mackinnon AD; Morris RG; Barrick TR; Markus HS
    Stroke; 2013 Feb; 44(2):356-61. PubMed ID: 23321452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.