These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30140842)

  • 1. Defect generation in TiO
    Savva AI; Smith KA; Lawson M; Croft SR; Weltner AE; Jones CD; Bull H; Simmonds PJ; Li L; Xiong H
    Phys Chem Chem Phys; 2018 Sep; 20(35):22537-22546. PubMed ID: 30140842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres.
    Sarma B; Jurovitzki AL; Ray RS; Smith YR; Mohanty SK; Misra M
    Nanotechnology; 2015 Jul; 26(26):265401. PubMed ID: 26057179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma-Induced Oxygen Vacancies in Urchin-Like Anatase Titania Coated by Carbon for Excellent Sodium-Ion Battery Anodes.
    Gan Q; He H; Zhao K; He Z; Liu S; Yang S
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7031-7042. PubMed ID: 29338183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable Pseudocapacitance in 3D TiO
    Huang S; Zhang L; Lu X; Liu L; Liu L; Sun X; Yin Y; Oswald S; Zou Z; Ding F; Schmidt OG
    ACS Nano; 2017 Jan; 11(1):821-830. PubMed ID: 28027436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of grain refinement and film formation potential on the electrochemical behavior of commercial pure titanium in Hank's physiological solution.
    Fattah-Alhosseini A; Imantalab O; Ansari G
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():827-834. PubMed ID: 27987778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the nature of defect states in tungstate nanoflake arrays as promising photoanodes in solar fuel cells.
    Mohamed AM; Amer AW; AlQaradawi SY; Allam NK
    Phys Chem Chem Phys; 2016 Aug; 18(32):22217-23. PubMed ID: 27453354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Electrochemical Properties of Li
    Wang K; Zhang C; Fu H; Liu C; Li Z; Ma W; Lu X; Cao G
    Chemistry; 2017 Apr; 23(22):5368-5374. PubMed ID: 28244211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-Deficient Titanium Dioxide Nanosheets as More Effective Polysulfide Reservoirs for Lithium-Sulfur Batteries.
    Wang HC; Fan CY; Zheng YP; Zhang XH; Li WH; Liu SY; Sun HZ; Zhang JP; Sun LN; Wu XL
    Chemistry; 2017 Jul; 23(40):9666-9673. PubMed ID: 28508401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays.
    Fang HT; Liu M; Wang DW; Sun T; Guan DS; Li F; Zhou J; Sham TK; Cheng HM
    Nanotechnology; 2009 Jun; 20(22):225701. PubMed ID: 19436089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the passive and semiconducting behavior of severely deformed pure titanium in Ringer's physiological solution at 37°C: A trial of the point defect model.
    Ansari G; Fattah-Alhosseini A
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():64-71. PubMed ID: 28415510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coaxial carbon/metal oxide/aligned carbon nanotube arrays as high-performance anodes for lithium ion batteries.
    Lou F; Zhou H; Tran TD; Melandsø Buan ME; Vullum-Bruer F; Rønning M; Walmsley JC; Chen D
    ChemSusChem; 2014 May; 7(5):1335-46. PubMed ID: 24578068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the performances of CuxO-TiO2 (x = 1, 2) nanomaterials as innovative anodes for thin film lithium batteries.
    Barreca D; Carraro G; Gasparotto A; Maccato C; Cruz-Yusta M; Gómez-Camer JL; Morales J; Sada C; Sánchez L
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3610-9. PubMed ID: 22704494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ternary Sn-Ti-O based nanostructures as anodes for lithium ion batteries.
    Wang H; Huang H; Niu C; Rogach AL
    Small; 2015 Mar; 11(12):1364-83. PubMed ID: 25504364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of oxygen vacancies in the performance of LiMn
    Wang J; Xing H; Hou W; Xu Y
    Phys Chem Chem Phys; 2023 Jul; 25(28):18903-18914. PubMed ID: 37403631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial Lattice-Strain-Driven Generation of Oxygen Vacancies in an Aerobic-Annealed TiO
    Zhang W; Cai L; Cao S; Qiao L; Zeng Y; Zhu Z; Lv Z; Xia H; Zhong L; Zhang H; Ge X; Wei J; Xi S; Du Y; Li S; Chen X
    Adv Mater; 2019 Dec; 31(52):e1906156. PubMed ID: 31693266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low temperature hydrogen reduction of high surface area anatase and anatase/β-TiO₂ for high-charging-rate batteries.
    Ventosa E; Tymoczko A; Xie K; Xia W; Muhler M; Schuhmann W
    ChemSusChem; 2014 Sep; 7(9):2584-9. PubMed ID: 25044925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells.
    Zhang C; Yu H; Li Y; Gao Y; Zhao Y; Song W; Shao Z; Yi B
    ChemSusChem; 2013 Apr; 6(4):659-66. PubMed ID: 23450835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogenated TiO2 Branches Coated Mn3O4 Nanorods as an Advanced Anode Material for Lithium Ion Batteries.
    Wang N; Yue J; Chen L; Qian Y; Yang J
    ACS Appl Mater Interfaces; 2015 May; 7(19):10348-55. PubMed ID: 25928277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti-6Al-7Nb for biomedical applications.
    Mohan L; Anandan C; Rajendran N
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():394-401. PubMed ID: 25746285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.