These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30140956)

  • 1. Multidimensional Vibrational Coherence Spectroscopy.
    Buckup T; Léonard J
    Top Curr Chem (Cham); 2018 Aug; 376(5):35. PubMed ID: 30140956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multidimensional time-resolved spectroscopy of vibrational coherence in biopolyenes.
    Buckup T; Motzkus M
    Annu Rev Phys Chem; 2014; 65():39-57. PubMed ID: 24245903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping multidimensional excited state dynamics using pump-impulsive-vibrational-spectroscopy and pump-degenerate-four-wave-mixing.
    Kraack JP; Wand A; Buckup T; Motzkus M; Ruhman S
    Phys Chem Chem Phys; 2013 Sep; 15(34):14487-501. PubMed ID: 23892713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions.
    Guo Z; Molesky BP; Cheshire TP; Moran AM
    Top Curr Chem (Cham); 2017 Nov; 375(6):87. PubMed ID: 29098464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast time-resolved vibrational spectroscopies of carotenoids in photosynthesis.
    Hashimoto H; Sugisaki M; Yoshizawa M
    Biochim Biophys Acta; 2015 Jan; 1847(1):69-78. PubMed ID: 25223589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibronic coupling in the excited-states of carotenoids.
    Miki T; Buckup T; Krause MS; Southall J; Cogdell RJ; Motzkus M
    Phys Chem Chem Phys; 2016 Apr; 18(16):11443-53. PubMed ID: 27055720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond Stimulated Raman Exposes the Role of Vibrational Coherence in Condensed-Phase Photoreactivity.
    Hoffman DP; Mathies RA
    Acc Chem Res; 2016 Apr; 49(4):616-25. PubMed ID: 27003235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broad-Band Impulsive Vibrational Spectroscopy of Excited Electronic States in the Time Domain.
    Liebel M; Kukura P
    J Phys Chem Lett; 2013 Apr; 4(8):1358-64. PubMed ID: 26282153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population-controlled impulsive vibrational spectroscopy: background- and baseline-free Raman spectroscopy of excited electronic states.
    Wende T; Liebel M; Schnedermann C; Pethick RJ; Kukura P
    J Phys Chem A; 2014 Oct; 118(43):9976-84. PubMed ID: 25244029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excited State Structural Evolution of a GFP Single-Site Mutant Tracked by Tunable Femtosecond-Stimulated Raman Spectroscopy.
    Tang L; Zhu L; Taylor MA; Wang Y; Remington SJ; Fang C
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30200474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrational Spectroscopy on Photoexcited Dye-Sensitized Films via Pump-Degenerate Four-Wave Mixing.
    Abraham B; Fan H; Galoppini E; Gundlach L
    J Phys Chem A; 2018 Mar; 122(8):2039-2045. PubMed ID: 29381068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: sub-30-fs resolved pump-probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution.
    Takeuchi S; Tahara T
    J Phys Chem A; 2005 Nov; 109(45):10199-207. PubMed ID: 16833312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fifth-order time-domain Raman spectroscopy of photoactive yellow protein for visualizing vibrational coupling in its excited state.
    Kuramochi H; Takeuchi S; Kamikubo H; Kataoka M; Tahara T
    Sci Adv; 2019 Jun; 5(6):eaau4490. PubMed ID: 31187055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational spectroscopy of resveratrol.
    Billes F; Mohammed-Ziegler I; Mikosch H; Tyihák E
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):669-79. PubMed ID: 17416548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical analysis of anharmonic coupling and cascading Raman signals observed with femtosecond stimulated Raman spectroscopy.
    Mehlenbacher RD; Lyons B; Wilson KC; Du Y; McCamant DW
    J Chem Phys; 2009 Dec; 131(24):244512. PubMed ID: 20059084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibronic coherence evolution in multidimensional ultrafast photochemical processes.
    Gaynor JD; Sandwisch J; Khalil M
    Nat Commun; 2019 Dec; 10(1):5621. PubMed ID: 31819052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherence Spectroscopy in the Condensed Phase: Insights into Molecular Structure, Environment, and Interactions.
    Dean JC; Scholes GD
    Acc Chem Res; 2017 Nov; 50(11):2746-2755. PubMed ID: 29043773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of femtosecond stimulated Raman spectroscopy of excited-state evolution in bacteriorhodopsin.
    Niu K; Zhao B; Sun Z; Lee SY
    J Chem Phys; 2010 Feb; 132(8):084510. PubMed ID: 20192310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy.
    Hildner R; Brinks D; Stefani FD; van Hulst NF
    Phys Chem Chem Phys; 2011 Feb; 13(5):1888-94. PubMed ID: 21240402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision.
    Schnedermann C; Yang X; Liebel M; Spillane KM; Lugtenburg J; Fernández I; Valentini A; Schapiro I; Olivucci M; Kukura P; Mathies RA
    Nat Chem; 2018 Apr; 10(4):449-455. PubMed ID: 29556051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.