BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 30141069)

  • 1. H
    Hou N; Xia Y; Wang X; Liu H; Liu H; Xun L
    Biodegradation; 2018 Dec; 29(6):511-524. PubMed ID: 30141069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cupriavidus necator H16 Uses Flavocytochrome
    Lü C; Xia Y; Liu D; Zhao R; Gao R; Liu H; Xun L
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions.
    Xia Y; Lü C; Hou N; Xin Y; Liu J; Liu H; Xun L
    ISME J; 2017 Dec; 11(12):2754-2766. PubMed ID: 28777380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant Escherichia coli with sulfide:quinone oxidoreductase and persulfide dioxygenase rapidly oxidises sulfide to sulfite and thiosulfate via a new pathway.
    Xin Y; Liu H; Cui F; Liu H; Xun L
    Environ Microbiol; 2016 Dec; 18(12):5123-5136. PubMed ID: 27573649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Heterotrophic Bacterium Cupriavidus pinatubonensis JMP134 Oxidizes Sulfide to Sulfate with Thiosulfate as a Key Intermediate.
    Xin Y; Gao R; Cui F; Lü C; Liu H; Liu H; Xia Y; Xun L
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32917752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoplasmic Localization of Sulfide:Quinone Oxidoreductase and Persulfide Dioxygenase of Cupriavidus pinatubonensis JMP134.
    Gao R; Liu H; Xun L
    Appl Environ Microbiol; 2017 Dec; 83(23):. PubMed ID: 28939597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles, mechanism of action, and potential applications of sulfur-oxidizing bacteria for environmental bioremediation.
    Nguyen PM; Do PT; Pham YB; Doan TO; Nguyen XC; Lee WK; Nguyen DD; Vadiveloo A; Um MJ; Ngo HH
    Sci Total Environ; 2022 Dec; 852():158203. PubMed ID: 36044953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Pathway of Sulfide Oxidation to Octasulfur Globules in the Cytoplasm of Aerobic Bacteria.
    Wang T; Ran M; Li X; Liu Y; Xin Y; Liu H; Liu H; Xia Y; Xun L
    Appl Environ Microbiol; 2022 Feb; 88(3):e0194121. PubMed ID: 34878813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Oxidation of inorganic sulfur compounds by obligatory organotrophic bacteria].
    Sorokin DIu
    Mikrobiologiia; 2003; 72(6):725-39. PubMed ID: 14768537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodaneses minimize the accumulation of cellular sulfane sulfur to avoid disulfide stress during sulfide oxidation in bacteria.
    Ran M; Li Q; Xin Y; Ma S; Zhao R; Wang M; Xun L; Xia Y
    Redox Biol; 2022 Jul; 53():102345. PubMed ID: 35653932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetrathionate reduction and production of hydrogen sulfide from thiosulfate.
    Barrett EL; Clark MA
    Microbiol Rev; 1987 Jun; 51(2):192-205. PubMed ID: 3299028
    [No Abstract]   [Full Text] [Related]  

  • 12. Kinetics and stoichiometry of aerobic sulfide oxidation in wastewater from sewers-effects of pH and temperature.
    Nielsen AH; Vollertsen J; Hvitved-Jacobsen T
    Water Environ Res; 2006 Mar; 78(3):275-83. PubMed ID: 16629268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides.
    Vitvitsky V; Yadav PK; Kurthen A; Banerjee R
    J Biol Chem; 2015 Mar; 290(13):8310-20. PubMed ID: 25688092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidity of persulfides and its modulation by the protein environments in sulfide quinone oxidoreductase and thiosulfate sulfurtransferase.
    Benchoam D; Cuevasanta E; Roman JV; Banerjee R; Alvarez B
    J Biol Chem; 2024 May; 300(5):107149. PubMed ID: 38479599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of alkaliphilic, chemolithoautotrophic, sulphur-oxidizing bacteria.
    Sorokin DY; Robertson LA; Kuenen JG
    Antonie Van Leeuwenhoek; 2000 Apr; 77(3):251-62. PubMed ID: 15188891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and Mechanistic Insights into Hemoglobin-catalyzed Hydrogen Sulfide Oxidation and the Fate of Polysulfide Products.
    Vitvitsky V; Yadav PK; An S; Seravalli J; Cho US; Banerjee R
    J Biol Chem; 2017 Mar; 292(13):5584-5592. PubMed ID: 28213526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemolithoautotrophic oxidation of thiosulfate, tetrathionate and thiocyanate by a novel rhizobacterium belonging to the genus Paracoccus.
    Ghosh W; Roy P
    FEMS Microbiol Lett; 2007 May; 270(1):124-31. PubMed ID: 17326754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steps of thiosulfate oxidation by Thiobacillus thioparus and Th. coproliticus.
    Mahmoud SA; Zaki MN; Abd El-Hafez AE
    Zentralbl Bakteriol Naturwiss; 1979; 134(5):444-7. PubMed ID: 44416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation.
    Barton LL; Fardeau ML; Fauque GD
    Met Ions Life Sci; 2014; 14():237-77. PubMed ID: 25416397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coenzyme Q
    Olson KR; Clear KJ; Derry PJ; Gao Y; Ma Z; Wu G; Kent TA; Straub KD
    Free Radic Biol Med; 2022 Mar; 182():119-131. PubMed ID: 35202787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.