These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 30141148)
1. Rapid automated determination of chemical shift anisotropy values in the carbonyl and carboxyl groups of fd-y21m bacteriophage using solid state NMR. Aharoni T; Goldbourt A J Biomol NMR; 2018 Oct; 72(1-2):55-67. PubMed ID: 30141148 [TBL] [Abstract][Full Text] [Related]
2. Dynamics and Rigidity of an Intact Filamentous Bacteriophage Virus Probed by Magic Angle Spinning NMR. Aharoni T; Goldbourt A Chemistry; 2018 Jun; 24(35):8737-8741. PubMed ID: 29660798 [TBL] [Abstract][Full Text] [Related]
3. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy. Wylie BJ; Franks WT; Rienstra CM J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346 [TBL] [Abstract][Full Text] [Related]
4. Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy. Hou G; Byeon IJ; Ahn J; Gronenborn AM; Polenova T J Chem Phys; 2012 Oct; 137(13):134201. PubMed ID: 23039592 [TBL] [Abstract][Full Text] [Related]
5. Solid-state (13)C NMR chemical shift anisotropy tensors of polypeptides. Wei Y; Lee DK; Ramamoorthy A J Am Chem Soc; 2001 Jun; 123(25):6118-26. PubMed ID: 11414846 [TBL] [Abstract][Full Text] [Related]
6. Measuring (13)C/(15)N chemical shift anisotropy in [(13)C,(15)N] uniformly enriched proteins using CSA amplification. Hung I; Ge Y; Liu X; Liu M; Li C; Gan Z Solid State Nucl Magn Reson; 2015 Nov; 72():96-103. PubMed ID: 26404770 [TBL] [Abstract][Full Text] [Related]
7. Scaled recoupling of chemical shift anisotropies at high magnetic fields under MAS with interspersed C-elements. Fritzsching KJ; Keeler EG; He C; McDermott AE J Chem Phys; 2020 Sep; 153(10):104201. PubMed ID: 32933302 [TBL] [Abstract][Full Text] [Related]
8. (15)N CSA tensors and (15)N-(1)H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR. Vugmeyster L; Ostrovsky D; Fu R J Magn Reson; 2015 Oct; 259():225-31. PubMed ID: 26367322 [TBL] [Abstract][Full Text] [Related]
9. Magic-angle spinning NMR of a class I filamentous bacteriophage virus. Abramov G; Morag O; Goldbourt A J Phys Chem B; 2011 Aug; 115(31):9671-80. PubMed ID: 21702439 [TBL] [Abstract][Full Text] [Related]
10. Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements. Ying J; Grishaev A; Bryce DL; Bax A J Am Chem Soc; 2006 Sep; 128(35):11443-54. PubMed ID: 16939267 [TBL] [Abstract][Full Text] [Related]
11. Structural characterization of bacteriophage viruses by NMR. Goldbourt A Prog Nucl Magn Reson Spectrosc; 2019; 114-115():192-210. PubMed ID: 31779880 [TBL] [Abstract][Full Text] [Related]
12. Isotropic chemical shifts in magic-angle spinning NMR spectra of proteins. Wylie BJ; Sperling LJ; Rienstra CM Phys Chem Chem Phys; 2008 Jan; 10(3):405-13. PubMed ID: 18174982 [TBL] [Abstract][Full Text] [Related]
13. Automated assignment of NMR spectra of macroscopically oriented proteins using simulated annealing. Lapin J; Nevzorov AA J Magn Reson; 2018 Aug; 293():104-114. PubMed ID: 29920407 [TBL] [Abstract][Full Text] [Related]
14. Determination of calpha chemical shift tensor orientation in peptides by dipolar-modulated chemical shift recoupling NMR spectroscopy. Yao X; Hong M J Am Chem Soc; 2002 Mar; 124(11):2730-8. PubMed ID: 11890824 [TBL] [Abstract][Full Text] [Related]
15. Complete chemical shift assignment of the ssDNA in the filamentous bacteriophage fd reports on its conformation and on its interface with the capsid shell. Morag O; Abramov G; Goldbourt A J Am Chem Soc; 2014 Feb; 136(6):2292-301. PubMed ID: 24447194 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of reassembled thioredoxin studied by magic angle spinning NMR: snapshots from different time scales. Yang J; Tasayco ML; Polenova T J Am Chem Soc; 2009 Sep; 131(38):13690-702. PubMed ID: 19736935 [TBL] [Abstract][Full Text] [Related]
17. Solid-state NMR approaches to internal dynamics of proteins: from picoseconds to microseconds and seconds. Krushelnitsky A; Reichert D; Saalwächter K Acc Chem Res; 2013 Sep; 46(9):2028-36. PubMed ID: 23875699 [TBL] [Abstract][Full Text] [Related]
18. Multidimensional solid state NMR of anisotropic interactions in peptides and proteins. Wylie BJ; Rienstra CM J Chem Phys; 2008 Feb; 128(5):052207. PubMed ID: 18266412 [TBL] [Abstract][Full Text] [Related]
19. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy. Weaver AJ; Kemple MD; Prendergast FG Biophys J; 1988 Jul; 54(1):1-15. PubMed ID: 3416021 [TBL] [Abstract][Full Text] [Related]
20. Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross-correlated relaxation in NMR spectroscopy. Loth K; Pelupessy P; Bodenhausen G J Am Chem Soc; 2005 Apr; 127(16):6062-8. PubMed ID: 15839707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]