BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30141268)

  • 1. Large field of view correction by using conjugate adaptive optics with multiple guide stars.
    Zhao Q; Shi X; Zhu X; Zheng Y; Wu C; Tang H; Hu L; Xue Y; Gong W; Si K
    J Biophotonics; 2019 Feb; 12(2):e201800225. PubMed ID: 30141268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aberration corrections of doughnut beam by adaptive optics in the turbid medium.
    Wu C; Chen J; Si K; Song Y; Zhu X; Hu L; Zheng Y; Gong W
    J Biophotonics; 2019 Nov; 12(11):e201900125. PubMed ID: 31291061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of multi-conjugate large area wavefront correction for deep tissue microscopy.
    Wu TW; Cui M
    Opt Express; 2015 Mar; 23(6):7463-70. PubMed ID: 25837086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced resolution through thick tissue with structured illumination and adaptive optics.
    Thomas B; Wolstenholme A; Chaudhari SN; Kipreos ET; Kner P
    J Biomed Opt; 2015 Feb; 20(2):26006. PubMed ID: 25714992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-field-of-view imaging by multi-pupil adaptive optics.
    Park JH; Kong L; Zhou Y; Cui M
    Nat Methods; 2017 Jun; 14(6):581-583. PubMed ID: 28481364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Widefield fluorescence microscopy with sensor-based conjugate adaptive optics using oblique back illumination.
    Li J; Bifano TG; Mertz J
    J Biomed Opt; 2016 Dec; 21(12):121504. PubMed ID: 27653793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined hardware and computational optical wavefront correction.
    South FA; Kurokawa K; Liu Z; Liu YZ; Miller DT; Boppart SA
    Biomed Opt Express; 2018 Jun; 9(6):2562-2574. PubMed ID: 30258673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large field of view aberrations correction with deformable lenses and multi conjugate adaptive optics.
    Furieri T; Bassi A; Bonora S
    J Biophotonics; 2023 Dec; 16(12):e202300104. PubMed ID: 37556187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First laboratory results with the LINC-NIRVANA high layer wavefront sensor.
    Zhang X; Gaessler W; Conrad AR; Bertram T; Arcidiacono C; Herbst TM; Kuerster M; Bizenberger P; Meschke D; Rix HW; Rao C; Mohr L; Briegel F; Kittmann F; Berwein J; Trowitzsch J; Schreiber L; Ragazzoni R; Diolaiti E
    Opt Express; 2011 Aug; 19(17):16087-95. PubMed ID: 21934971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars.
    Tao X; Azucena O; Fu M; Zuo Y; Chen DC; Kubby J
    Opt Lett; 2011 Sep; 36(17):3389-91. PubMed ID: 21886220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field of view advantage of conjugate adaptive optics in microscopy applications.
    Mertz J; Paudel H; Bifano TG
    Appl Opt; 2015 Apr; 54(11):3498-506. PubMed ID: 25967343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting the potential of commercial objectives to extend the field of view of two-photon microscopy by adaptive optics.
    Yao J; Gao Y; Yin Y; Lai P; Ye S; Zheng W
    Opt Lett; 2022 Feb; 47(4):989-992. PubMed ID: 35167576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional focusing through scattering media using conjugate adaptive optics with remote focusing (CAORF).
    Tao X; Lam T; Zhu B; Li Q; Reinig MR; Kubby J
    Opt Express; 2017 May; 25(9):10368-10383. PubMed ID: 28468409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended field-of-view adaptive optics in microscopy via numerical field segmentation.
    Rajaeipour P; Dorn A; Banerjee K; Zappe H; Ataman Ç
    Appl Opt; 2020 Apr; 59(12):3784-3791. PubMed ID: 32400506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging.
    Thaung J; Knutsson P; Popovic Z; Owner-Petersen M
    Opt Express; 2009 Mar; 17(6):4454-67. PubMed ID: 19293873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavefront correction for adaptive optics with reflected light and deep neural networks.
    Vishniakou I; Seelig JD
    Opt Express; 2020 May; 28(10):15459-15471. PubMed ID: 32403573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution in vivo imaging of mouse brain through the intact skull.
    Park JH; Sun W; Cui M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9236-41. PubMed ID: 26170286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guide-star-based computational adaptive optics for broadband interferometric tomography.
    Adie SG; Shemonski ND; Graf BW; Ahmad A; Scott Carney P; Boppart SA
    Appl Phys Lett; 2012 Nov; 101(22):221117. PubMed ID: 23284179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solar tomography adaptive optics.
    Ren D; Zhu Y; Zhang X; Dou J; Zhao G
    Appl Opt; 2014 Mar; 53(8):1683-96. PubMed ID: 24663427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-shot quantitative aberration and scattering length measurements in mouse brain tissues using an extended-source Shack-Hartmann wavefront sensor.
    Imperato S; Harms F; Hubert A; Mercier M; Bourdieu L; Fragola A
    Opt Express; 2022 Apr; 30(9):15250-15265. PubMed ID: 35473251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.