These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30141334)

  • 1. DFT Variants for Mixed-Metal Oxides. Benchmarks Using Multi-Center Cluster Models.
    Rugg G; Genest A; Rösch N
    J Phys Chem A; 2018 Sep; 122(35):7042-7050. PubMed ID: 30141334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heats of Formation of Medium-Sized Organic Compounds from Contemporary Electronic Structure Methods.
    Minenkov Y; Wang H; Wang Z; Sarathy SM; Cavallo L
    J Chem Theory Comput; 2017 Aug; 13(8):3537-3560. PubMed ID: 28636351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Big data benchmarking: how do DFT methods across the rungs of Jacob's ladder perform for a dataset of 122k CCSD(T) total atomization energies?
    Karton A
    Phys Chem Chem Phys; 2024 May; 26(20):14594-14606. PubMed ID: 38738470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Troubles in the Systematic Prediction of Transition Metal Thermochemistry with Contemporary Out-of-the-Box Methods.
    Minenkov Y; Chermak E; Cavallo L
    J Chem Theory Comput; 2016 Apr; 12(4):1542-60. PubMed ID: 27002380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How reliable is DFT in predicting relative energies of polycyclic aromatic hydrocarbon isomers? comparison of functionals from different rungs of jacob's ladder.
    Karton A
    J Comput Chem; 2017 Mar; 38(6):370-382. PubMed ID: 27859494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Assessment of DFT Performances in Ru- and Rh-Promoted σ-Bond Activations.
    Sun Y; Hu L; Chen H
    J Chem Theory Comput; 2015 Apr; 11(4):1428-38. PubMed ID: 26574354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking Density Functionals for Chemical Bonds of Gold.
    Kepp KP
    J Phys Chem A; 2017 Mar; 121(9):2022-2034. PubMed ID: 28211697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of DFT for C
    Karton A; Waite SL; Page AJ
    J Phys Chem A; 2019 Jan; 123(1):257-266. PubMed ID: 30521343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of density functionals and paucity of non-covalent interactions in aminoylyne complexes of molybdenum and tungsten [(η(5)-C5H5)(CO)2M≡EN(SiMe3)(R)] (E = Si, Ge, Sn, Pb): a dispersion-corrected DFT study.
    Pandey KK; Patidar P; Bariya PK; Patidar SK; Vishwakarma R
    Dalton Trans; 2014 Jul; 43(26):9955-67. PubMed ID: 24850167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density functional theory assessment of molecular structures and energies of neutral and anionic Al(n) (n = 2-10) clusters.
    Paranthaman S; Hong K; Kim J; Kim DE; Kim TK
    J Phys Chem A; 2013 Sep; 117(38):9293-303. PubMed ID: 24028335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of density functional approximations on the calculated Jahn-Teller distortion in bis(terpyridine)manganese(III) and related compounds.
    Conradie J
    J Mol Model; 2024 Jan; 30(1):20. PubMed ID: 38165497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmark study of the performance of density functional theory for bond activations with (ni,pd)-based transition-metal catalysts.
    Steinmetz M; Grimme S
    ChemistryOpen; 2013 Jun; 2(3):115-24. PubMed ID: 24551548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In search of the best DFT functional for dealing with organic anionic species.
    Borioni JL; Puiatti M; Vera DM; Pierini AB
    Phys Chem Chem Phys; 2017 Mar; 19(13):9189-9198. PubMed ID: 28317981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of Density Functional Theory for Transition Metal Oxygen Bonds.
    Moltved KA; Kepp KP
    Chemphyschem; 2019 Dec; 20(23):3210-3220. PubMed ID: 31596037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivity of metal oxide clusters with hydrogen peroxide and water--a DFT study evaluating the performance of different exchange-correlation functionals.
    Lousada CM; Johansson AJ; Brinck T; Jonsson M
    Phys Chem Chem Phys; 2013 Apr; 15(15):5539-52. PubMed ID: 23460024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of Ligand Dissociation Energies in Large Transition-Metal Complexes.
    Husch T; Freitag L; Reiher M
    J Chem Theory Comput; 2018 May; 14(5):2456-2468. PubMed ID: 29595973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods.
    Liu Y; Zhao J; Li F; Chen Z
    J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchy of Commonly Used DFT Methods for Predicting the Thermochemistry of Rh-Mediated Chemical Transformations.
    Shiekh BA
    ACS Omega; 2019 Sep; 4(13):15435-15443. PubMed ID: 31572844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate experimental and theoretical enthalpies of association of TiCl
    Credendino R; Minenkov Y; Liguori D; Piemontesi F; Melchior A; Morini G; Tolazzi M; Cavallo L
    Phys Chem Chem Phys; 2017 Oct; 19(39):26996-27006. PubMed ID: 28956566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmark Database for Ylidic Bond Dissociation Energies and Its Use for Assessments of Electronic Structure Methods.
    Zhao Y; Ng HT; Peverati R; Truhlar DG
    J Chem Theory Comput; 2012 Aug; 8(8):2824-34. PubMed ID: 26592123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.