These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 30141359)

  • 21. Circulatory loop design and components introduce artifacts impacting in vitro evaluation of ventricular assist device thrombogenicity: A call for caution.
    Li M; Walk R; Roka-Moiia Y; Sheriff J; Bluestein D; Barth EJ; Slepian MJ
    Artif Organs; 2020 Jun; 44(6):E226-E237. PubMed ID: 31876310
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study.
    Thamsen B; Mevert R; Lommel M; Preikschat P; Gaebler J; Krabatsch T; Kertzscher U; Hennig E; Affeld K
    Int J Artif Organs; 2016 Jun; 39(4):178-83. PubMed ID: 27034319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of blood viscosity on shear-induced hemolysis using a magnetically levitated shearing device.
    Krisher JA; Malinauskas RA; Day SW
    Artif Organs; 2022 Jun; 46(6):1027-1039. PubMed ID: 35030287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational fluid dynamics prediction of blood damage in a centrifugal pump.
    Song X; Throckmorton AL; Wood HG; Antaki JF; Olsen DB
    Artif Organs; 2003 Oct; 27(10):938-41. PubMed ID: 14616540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design Rationale and Preclinical Evaluation of the HeartMate 3 Left Ventricular Assist System for Hemocompatibility.
    Bourque K; Cotter C; Dague C; Harjes D; Dur O; Duhamel J; Spink K; Walsh K; Burke E
    ASAIO J; 2016; 62(4):375-83. PubMed ID: 27195742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hemolysis in a laminar flow-through Couette shearing device: an experimental study.
    Boehning F; Mejia T; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2014 Sep; 38(9):761-5. PubMed ID: 24867102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acquired von Willebrand syndrome after exchange of the HeartMate XVE to the HeartMate II ventricular assist device.
    Malehsa D; Meyer AL; Bara C; Strüber M
    Eur J Cardiothorac Surg; 2009 Jun; 35(6):1091-3. PubMed ID: 19303790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development.
    Telyshev D; Denisov M; Pugovkin A; Selishchev S; Nesterenko I
    Artif Organs; 2018 Apr; 42(4):432-443. PubMed ID: 29508416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of hemodynamics in the ascending aorta between pulsatile and continuous flow left ventricular assist devices using computational fluid dynamics based on computed tomography images.
    Karmonik C; Partovi S; Schmack B; Weymann A; Loebe M; Noon GP; Piontek P; Karck M; Lumsden AB; Ruhparwar A
    Artif Organs; 2014 Feb; 38(2):142-8. PubMed ID: 23889366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of the Axial Gap Clearance in a Hydrodynamic-Passive Magnetically Levitated Rotary Blood Pump Using X-Ray Radiography.
    Thamsen B; Plamondon M; Granegger M; Schmid Daners M; Kaufmann R; Neels A; Meboldt M
    Artif Organs; 2018 May; 42(5):510-515. PubMed ID: 29341175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterizing the HeartMate II Left Ventricular Assist Device Outflow Using Particle Image Velocimetry.
    Rowlands GW; Good BC; Deutsch S; Manning KB
    J Biomech Eng; 2018 Jul; 140(7):. PubMed ID: 29715362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of shear stress related hemolysis in a ventricular assist device.
    Bounouib M; Benakrach H; Taha-Janan M; Maazouzi W
    Biomed Mater Eng; 2023; 34(1):51-66. PubMed ID: 35988210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strain-based blood damage estimation for computational design of ventricular assist devices.
    Gesenhues L; Pauli L; Behr M
    Int J Artif Organs; 2016 Jun; 39(4):166-70. PubMed ID: 27079416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluid dynamics aspects of miniaturized axial-flow blood pump.
    Kang C; Huang Q; Li Y
    Biomed Mater Eng; 2014; 24(1):723-9. PubMed ID: 24211957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study of flow-induced hemolysis using novel Couette-type blood-shearing devices.
    Zhang T; Taskin ME; Fang HB; Pampori A; Jarvik R; Griffith BP; Wu ZJ
    Artif Organs; 2011 Dec; 35(12):1180-6. PubMed ID: 21810113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of the Flow Field in the HeartMate 3 Using Three-Dimensional Particle Tracking Velocimetry and Comparison to Computational Fluid Dynamics.
    Thamsen B; Gülan U; Wiegmann L; Loosli C; Schmid Daners M; Kurtcuoglu V; Holzner M; Meboldt M
    ASAIO J; 2020 Feb; 66(2):173-182. PubMed ID: 30883404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model.
    Nikfar M; Razizadeh M; Zhang J; Paul R; Wu ZJ; Liu Y
    Artif Organs; 2020 Aug; 44(8):E348-E368. PubMed ID: 32017130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shear stress evaluation on blood cells using computational fluid dynamics.
    Mitoh A; Suebe Y; Kashima T; Koyabu E; Sobu E; Okamoto E; Mitamura Y; Nishimura I
    Biomed Mater Eng; 2020; 31(3):169-178. PubMed ID: 32597794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Turbulence and turbulent flow structures in a ventricular assist device-A numerical study using the large-eddy simulation.
    Torner B; Konnigk L; Abroug N; Wurm H
    Int J Numer Method Biomed Eng; 2021 Mar; 37(3):e3431. PubMed ID: 33336869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microscopic investigation of erythrocyte deformation dynamics.
    Zhao R; Antaki JF; Naik T; Bachman TN; Kameneva MV; Wu ZJ
    Biorheology; 2006; 43(6):747-65. PubMed ID: 17148857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.