These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30141534)

  • 1. SIESTA-SIPs: Massively parallel spectrum-slicing eigensolver for an ab initio molecular dynamics package.
    Keçeli M; Corsetti F; Campos C; Roman JE; Zhang H; Vázquez-Mayagoitia Á; Zapol P; Wagner AF
    J Comput Chem; 2018 Aug; 39(22):1806-1814. PubMed ID: 30141534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shift-and-invert parallel spectral transformation eigensolver: Massively parallel performance for density-functional based tight-binding.
    Keçeli M; Zhang H; Zapol P; Dixon DA; Wagner AF
    J Comput Chem; 2016 Feb; 37(4):448-59. PubMed ID: 26576689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIESTA-PEXSI: massively parallel method for efficient and accurate ab initio materials simulation without matrix diagonalization.
    Lin L; García A; Huhs G; Yang C
    J Phys Condens Matter; 2014 Jul; 26(30):305503. PubMed ID: 25007803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular implementation of the linear- and cubic-scaling orbital minimization methods in electronic structure codes using atomic orbitals.
    Lebedeva IV; García A; Artacho E; Ordejón P
    R Soc Open Sci; 2023 Apr; 10(4):230063. PubMed ID: 37122948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valence : A Massively Parallel Implementation of the Variational Subspace Valence Bond Method.
    Fletcher GD; Bertoni C; Keçeli M; D'Mello M
    J Comput Chem; 2019 Jun; 40(17):1664-1673. PubMed ID: 30919485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration.
    Zhou Y; Saad Y; Tiago ML; Chelikowsky JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066704. PubMed ID: 17280174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science.
    Marek A; Blum V; Johanni R; Havu V; Lang B; Auckenthaler T; Heinecke A; Bungartz HJ; Lederer H
    J Phys Condens Matter; 2014 May; 26(21):213201. PubMed ID: 24786764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Projected Commutator DIIS Method for Accelerating Hybrid Functional Electronic Structure Calculations.
    Hu W; Lin L; Yang C
    J Chem Theory Comput; 2017 Nov; 13(11):5458-5467. PubMed ID: 28937762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance analysis of electronic structure codes on HPC systems: a case study of SIESTA.
    Corsetti F
    PLoS One; 2014; 9(4):e95390. PubMed ID: 24748385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum supercharger library: hyper-parallel integral derivatives algorithms for ab initio QM/MM dynamics.
    Renison CA; Fernandes KD; Naidoo KJ
    J Comput Chem; 2015 Jul; 36(18):1410-9. PubMed ID: 25975864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.
    Rana MK; Chandra A
    J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the electronic structure of liquid rubidium by the methods of ab initio molecular dynamics, linear muffin-tin orbitals and recursion.
    Mirzoev AA; Mirzoev AA; Sobolev AN; Gelchinski BR
    J Phys Condens Matter; 2008 Mar; 20(11):114104. PubMed ID: 21694197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-Scale Condensed Matter DFT Simulations: Performance and Capabilities of the CRYSTAL Code.
    Erba A; Baima J; Bush I; Orlando R; Dovesi R
    J Chem Theory Comput; 2017 Oct; 13(10):5019-5027. PubMed ID: 28873313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculating geochemical reaction pathways--exploration of the inner-sphere water exchange mechanism in Al(H2O)6(3+)(aq) + nH2O with ab Initio calculations and molecular dynamics.
    Evans RJ; Rustad JR; Casey WH
    J Phys Chem A; 2008 May; 112(17):4125-40. PubMed ID: 18366199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iterative eigensolver using fixed-point photonic primitive.
    Klein AB; Zhu Z; Saiham D; Li G; Pang SS
    Opt Lett; 2024 Jan; 49(2):194-197. PubMed ID: 38194526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio molecular dynamics using hybrid density functionals.
    Guidon M; Schiffmann F; Hutter J; VandeVondele J
    J Chem Phys; 2008 Jun; 128(21):214104. PubMed ID: 18537412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Full Quantum Eigensolver for Quantum Chemistry Simulations.
    Wei S; Li H; Long G
    Research (Wash D C); 2020; 2020():1486935. PubMed ID: 32274468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications.
    Govind Rajan A; Strano MS; Blankschtein D
    J Phys Chem Lett; 2018 Apr; 9(7):1584-1591. PubMed ID: 29528646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
    Marsalek O; Uhlig F; VandeVondele J; Jungwirth P
    Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.